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Objective and Background 
The objective of this report is to provide the Program Research and Surveys Division of the 
Office of Research, Information and Planning (ORIP) at the Equal Employment Opportunity 
Commission (EEOC) the most efficient means of collecting compensation data from employers.  

EEOC currently has a significant data collection program that focuses primarily on the race and 
gender of employees by occupation group. The EEO-1 report collects annual data from private 
employers with 100 or more employees and federal contractors with 50 or more employees. The 
data are collected from any pay period from July to September and include 7 race and ethnicity 
categories and 10 broad occupation groups, by gender. There are different types of reports for 
single-establishment and multiple-establishment employers. The EEO-3 report draws from 
referral unions, generally those with exclusive hiring arrangements. It collects data on 
membership and referrals by race, ethnicity, and gender. This report is required in even-
numbered years and has a due date of December 31. The EEO-4 report is required from state and 
local government employers in odd-numbered years and has a due date of September 30. This 
report is the only one that collects employment data by occupation group and salary range for 
race, ethnicity, and gender. Finally, the EEO-5 report is used for primary and secondary public 
school districts. It is required in even-numbered years and has a due date of November 30. 

EEOC does collect some pay-related data to enforce antidiscrimination laws; however, the data 
from employers are limited and do not include ongoing measurement of possible discrimination 
in compensation. Data on private-sector employers are collected on a case-by-case basis to 
support investigations into discriminatory practices.1 

In 2010, the White House National Equal Pay Enforcement Task Force identified several 
challenges to the successful enforcement of compensation discrimination laws and recommended 
that EEOC take measures to identify the data needed to enhance its efforts to enforce these 
laws.2 To follow up on the task force’s recommendations, EEOC asked the National Research 
Council of the National Academy of Sciences (NAS) to convene a panel that would review 
methods for measuring and collecting pay information from U.S. employers by gender, race, and 
national origin. The panel evaluated currently available and potential data sources, 
methodological requirements, and appropriate statistical techniques for the measurement and 
collection of employer pay data and presented its findings to EEOC in a 2012 study. Among 
other recommendations, the panel suggested conducting a pilot study to estimate the costs and 
benefits of the proposed data collection, the burden on respondents, and the fitness of the data 
collected.3  

This report presents the findings of the independent pilot study that EEOC commissioned. In 
addition to an overview of existing definitions of pay, the report recommends the most 
appropriate definition and unit of pay to be collected and the most appropriate statistical tests to 
analyze compensation data.  

1 National Research Council. 2012. Collecting Compensation Data From Employers. Washington, DC: National 
Academies Press, 8. Available at http://www.nap.edu/openbook.php?record_id=13496 
2 White House. 2010. “National Equal Pay Enforcement Task Force,” 6. Available at 
http://www.whitehouse.gov/sites/default/files/rss_viewer/equal_pay_task_force.pdf. 
3 National Research Council 2012, 3.  
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Section I: Definitions and Measures of Earnings 
One of the major challenges in collecting compensation data is the lack of a uniform definition of 
pay. EEOC needs to identify the definition that would place the least burden on the respondent 
and enable the organization to develop tools to identify pay disparity. 

The following section summarizes the different measures of compensation used by existing data 
collection systems. 

Occupational Employment Statistics 

Occupational Employment Statistics (OES), a cooperative program between U.S. Bureau of 
Labor Statistics (BLS) and state workforce agencies, is a large survey designed to measure 
occupational employment and wage rates among full- and part-time nonfarm workers. The 
semiannual survey is sent to a sample of 200,000 establishments. The estimates are based on a 
sample size of 1.2 million establishments that responded in six panels over a 3-year period. OES 
produces hourly and annual wage data for more than 800 detailed occupations based on the 
federal Office of Management and Budget’s Standard Occupational Classification (SOC) system. 
OES requires establishments to report the number of workers in a certain occupation who fall 
within each of 12 wage intervals instead of exact wages. The measures of earnings used in this 
program include base rate of pay, cost of living allowances, guaranteed pay, hazardous-duty pay, 
incentive pay such as commissions and production bonuses, tips, and on-call pay. Back pay, jury 
duty pay, overtime pay, severance pay, shift differentials, nonproduction bonuses, employer 
costs for supplementary benefits, and tuition reimbursements are excluded.4 

National Compensation Survey 

The National Compensation Survey (NCS) is a BLS establishment survey of employee salaries, 
wages, and benefits. The survey produces estimates of occupational earnings and employers’ 
cost for employee compensation as well as data on compensation and wage trends by geographic 
location, employer-provided employee benefits, and provision of benefits. The survey excludes 
federal and quasi-federal employees along with agricultural workers, self-employed workers, 
volunteers, individuals receiving disability compensation, workers in private households, 
proprietors, major stockholders, family members being paid token wages, unpaid workers, and 
partners in unincorporated firms. “Earnings are defined as regular payments from employers to 
their employees as compensation for straight-time hourly wages or for any salaried work 
performed.” They include incentive pay such as commissions, piece-rate payments, production 
bonuses, cost of living adjustments, hazard pay, payments for income deferred due to 
participation in a salary reduction plan, and deadhead pay. Premium pay for overtime, holidays, 
and weekends; shift differentials; draws; nonproduction bonuses; tips; and uniform and tool 
allowances are excluded.5, 6 

4 U.S. Bureau of Labor Statistics. n.d. “Occupational Employment Statistics.” Available at 
http://www.bls.gov/oes/current/oes_tec.htm. For the 12 wage intervals, see also U.S. Bureau of Labor Statistics. 
2015a. “Survey Methods and Reliability Statement for the May 2014 Occupational Employment Statistics Survey,” 
4. Available at http://www.bls.gov/oes/current/methods_statement.pdf. 
5 U.S. Bureau of Labor Statistics. 2013. “Overview on BLS Statistics on Pay and Benefits.” Available at 
http://www.bls.gov/bls/wages.htm. 
6 U.S. Bureau of Labor Statistics. 2011. “National Compensation Survey: Occupational Earnings in the 
United States, 2010,” 8–9. Available at http://www.bls.gov/ncs/ncswage2010.pdf. 
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Current Employment Statistics 

The Current Employment Statistics (CES) survey program is a BLS and state cooperative 
program that produces data on earnings but not wages. CES publishes average hourly earnings 
by industry that are measured by dividing gross payrolls by total paid hours during the pay 
period that includes the 12th day of the month. Averages of hourly earnings differ from wage 
rates. Earnings are the return to an employee for a stated period in an industry; rates are the 
amount stipulated for a given unit of work or time in a specific job. Average hourly earnings do 
not represent employers’ total compensation costs (as calculated by the NCS) because they 
exclude items such as employee benefits, irregular bonuses and commissions, retroactive 
payments, and the employers’ share of payroll taxes.7 

The three BLS surveys do not include demographic information useful for identifying pay 
discrimination or enforcing antidiscriminatory laws. 

Administrative Definitions 
The Social Security Administration (SSA) defines income as any payment received during a 
calendar month that can be used to meet a person’s needs for food or shelter. Income may be in 
cash or in kind. In-kind income can be food or shelter, or something that can be used to get food 
or shelter. Under Social Security law, income means both earned income and unearned income. 
Examples of unearned income are pay received for work while an inmate in a penal institution, 
interest and dividends, retirement income, Social Security, unemployment benefits, alimony, and 
child support.8 

The Internal Revenue Service (IRS) defines gross income (as reported on Form W-2) as 
including wages, salaries, fees, commissions, tips, taxable fringe benefits, and elective deferrals. 
Amounts withheld for taxes, including but not limited to income tax, Social Security, and 
Medicare taxes, are considered "received" and must be included as gross income of the given 
year they are withheld.9,10  

Defining Pay for EEOC 

As previously discussed, no clear and consistent definition of earnings exists. For EEOC to 
collect data that provides valuable information on pay disparity, the definition of earnings needs 
to be consistent, well defined, and compatible with the data elements in respondents’ human 
resources and pay systems. In addition, the definition needs to encompass all the types of income 
that individuals earn. Of all the definitions provided above, the OES and W-2 definitions of 
wages would be most widely known to employers. BLS collects OES data through a semiannual 
survey. The May 2013 survey was sent to 1,120,628 establishments and had a response rate of 
75.3 percent.11 The IRS requires all employers, regardless of size and industry, to file W-2 data 

7 National Research Council 2012, 8.  
8 Social Security Administration. n.d. “Compilation of the Social Security Laws: Income.” Available at 
http://www.ssa.gov/OP_Home/ssact/title16b/1612.htm. 
9 Internal Revenue Service. 2014. “Wages, Salaries, and Other Earnings.” In: Internal Revenue Service. Your 
Federal Income Tax (Individuals). Available at http://www.irs.gov/publications/p17/ch05.html.   
10 Internal Revenue Service. 2015. “What Is Earned Income?” Available at http://www.irs.gov/Individuals/What-is-
Earned-Income%3F.  
11 U.S. Bureau of Labor Statistics 2015a.  
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for their employees. The following section reviews the strengths and weaknesses of each 
measure to determine the definition that best fits the needs of EEOC.    

The NAS study recommends using OES’ wage definition because of its widespread coverage. 
The W-2 definition, however, includes certain components that the OES measure excludes. “The 
W-2 earnings variables,” according to the NAS study, “provide a unique and comprehensive 
window on earnings data at the employee level.”  

OES defines earnings as straight-time, gross pay, excluding premium pay. Wage data include 
base rate, hazardous duty pay, cost of living allowances, guaranteed pay, incentive pay, tips, 
commissions, and production bonuses. However, other types of compensation such as overtime 
pay, severance pay, shift differentials, nonproduction bonuses, year-end bonuses, holiday 
bonuses, and tuition reimbursement are excluded.12  

The W-2 definition considers all earned income, including supplemental pay components such as 
overtime pay, shift differentials, and nonproduction bonuses (year-end bonuses, hiring and 
referral bonuses, and profit-sharing cash bonuses etc.).13 Data published by BLS show that 
supplemental pay accounts for 2.4 percent of total compensation for all civilian workers and 
nearly 4 percent of total compensation for workers in goods-producing industries.14 A panel of 
Human Resource Information System (HRIS) experts convened for this study noted that current 
compensation trends involve giving high-level executives bonuses, which are not counted as 
salary under OES.15 Although supplemental pay components constitute only a small part of 
employee compensation, they are important for certain occupations. For example, nonproduction 
bonuses account for more than 11 percent of cash compensation for management and business 
and financial operations, and shift differentials are a large part of compensation for healthcare 
workers.16 In addition, compensation structures in recent years have been expanded to focus on 
variable pay, which includes production and nonproduction bonuses.17 According to a 2014 
survey of 1,064 U.S. companies, “91 percent of organizations offer a variable pay program and 
expect to spend 12.7 percent of payroll on variable pay for salaried exempt employees in 

12 U.S. Bureau of Labor Statistics. 2015b. “Occupational Employment Statistics: Frequently Asked Questions.” 
Available at http://www.bls.gov/oes/oes_ques.htm.  
13 U.S. Bureau of Labor Statistics. 2000. “Fact Sheet for the June 2000 Employment Cost Index Release.” Available 
at http://www.bls.gov/ncs/ect/sp/ecrp0003.pdf. 
14 U.S. Bureau of Labor Statistics. 2015c. “Economic News Release: Table 1 — Civilian Workers, by Major 
Occupational and Industry Group.” Available at http://www.bls.gov/news.release/ecec.t01.htm. 
15 Members of the panel included Charles Roberts, HRIS/PeopleSoft consultant; D.V. Rastogi of Exa AG, an SAP 
services provider; Hareesh Venkateswaran, HRIS consultant with expertise in compensation, payroll, and benefits; 
and K. Jayabalan, SAP Human Resources module expert. 
16 Bishow, J.L. 2009. “A Look at Supplemental Pay: Overtime Pay, Bonuses, and Shift Differentials.” 
Compensation and Working Conditions Online, 5–7. Available at http://www.bls.gov/opub/mlr/cwc/a-look-at-
supplemental-pay-overtime-pay-bonuses-and-shift-differentials.pdf. “Analysis is limited to only jobs that receive 
positive payments — that is, those jobs that actually receive supplemental pay, as opposed to the average for all jobs 
— the percentage for each type of supplemental pay is higher.” 
17 At the executive level, direct compensation grew by 4.6 percent from 1990 to 2003, but when long-term bonus 
payments are included in the compensation calculation, the increase amounts to more than 7.5 percent per year. See 
Frydman, C., and R. Saks. 2005. “Historical Trends in Executive Compensation 1936–2003.” Harvard University 
Working Paper, 17. Available at 
http://web.stanford.edu/group/scspi/_media/pdf/Reference%20Media/Frydman%20and%20Saks_2005_Elites.pdf. 
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2015.”18 Another survey conducted to determine trends in companies’ bonus practices found that 
in 2014, 74 percent of respondents used a sign-on bonus program and 61 percent used a retention 
bonus program.19  

The W-2 definition of income, which includes these important compensation elements, offers a 
more comprehensive picture of earnings data and therefore is more appropriate for identifying 
discriminatory practices.  

Furthermore, extracting W-2 data may not create a measurable burden for most respondents. 
Federal law requires all employers to generate W-2 forms for their employees. According to 
HRIS experts, most of the major payroll software systems (such as ADP, PeopleSoft, SAP, and 
Kronos) and off-the-shelf payroll software are preprogrammed to compile data for generating W-
2s; employers using these systems to run their payroll in house can report these data with 
minimal burden.  

However, companies that outsource their payroll would need to bear a one-time burden to write 
custom programs to import the data from their payroll companies into their HRIS systems. The 
only information readily available from HRIS systems is the rate of pay, which is static 
information. The rate of pay changes only for a job change or to adjust for shift differentials. 
However, the rate of pay alone does not reflect the total earned income of an employee at any 
given time. As the HRIS experts pointed out, all the basic information regarding position, pay 
bands, and job code is stored in PeopleSoft or SAP or similar human resources systems. This 
information is transferred to ADP or other payroll processing engines for processing paychecks. 
In addition, most companies use total compensation data rather than pay rates alone for 
recruiting, especially for high-level positions, and therefore have access to this level of 
information.  

Another potential issue highlighted by the HRIS experts was that the EEO-1 data are collected in 
October of each year while W-2 data are compiled at the end of the calendar year. Third-party 
payroll vendors may need to adjust their business model because W-2 data will be required in 
October. Earnings information for employees, however, is available on a year-to-date basis. 
Employers could therefore use payroll reports for the previous four quarters to generate the 
necessary data. Furthermore, payroll records are accumulative, and for employers with 
automated payroll systems, generating reports at any given time should not be burdensome. The 
W-2 data can be imported into an HRIS and a data field can be established to accumulate for 
reporting. This process would be a one-time burden on the respondents. 

In February 2012, EEOC held a 2-day forum for EEOC survey respondents, statisticians, HRIS 
experts, and information technology specialists to review current data collection procedures, 
obtain feedback on future modernization, and get initial feedback on collecting compensation 
data as well as multiple-race category data. The participants unanimously agreed that, other than 
the one-time burden for writing necessary custom programs, providing compensation data would 
incur a minimal burden on employers. EEO-5 survey respondents stated that as long as they 

18 Aon Hewitt. 2014. “New Aon Hewitt Survey Shows 2014 Variable Pay Spending Spikes to Record-High Level.” 
Press release, 27 August. Available at http://aon.mediaroom.com/New-Aon-Hewitt-Survey-Shows-2014-Variable-
Pay-Spending-Spikes-to-Record-High-Level. 
19 WorldatWork. 2014. Bonus Programs and Practices, Scottsdale, Arizona: WorldatWork, 10. Available at 
http://www.worldatwork.org/adimLink?id=75444. 
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knew which components were included in the definition of compensation, providing 
compensation data would not be an excessive burden. In the words of one EEO-5 respondent, 
“[T]he pay data is public knowledge. Though there is no consistent reporting mechanism, to 
provide such data would be fairly simple.”20 The EEO-1 respondents stated that although 
reporting means would incur less expense than reporting pay bands, they were concerned about 
the confidentiality of the data.  

Determining a Unit of Measurement for Data Collection 

To determine a unit of measurement, it is important to consider issues such as collectability, 
respondent burden, data utility, and data processing and maintenance costs.21 Detailed individual 
level earnings data would eliminate ambiguity and lead to a better-informed assessment of 
existence of discrimination, but obtaining such data is very expensive and the costs may 
outweigh the benefits. Furthermore, data collection of this magnitude would not only place 
excessive burden on both the respondents and EEOC, but it could also lead to serious privacy 
and confidentiality issues requiring the implementation of carefully designed data security 
systems. Maintaining the confidentiality of compensation data was one of the main concerns that 
EEO-1 survey respondents expressed at the 2012 EEOC forum. Using aggregate data in place of 
data at the individual level can address some of the confidentiality issues along with lowering 
costs and employer burden, but it can also result in loss of information. This loss of information, 
however, can be minimized by applying an appropriate data grouping system.22  

Various options are available for collecting aggregate pay information, including pay rates 
(calculated by the employer), range of pay (with a maximum and minimum provided by the 
employer), total pay, and average or median pay. These measures, however, place an undue 
burden on respondents, and there is no data check on the calculations. Average pay by 
occupation would give limited information about variation. Collecting the range of pay and 
average can produce biased estimates for the typical right-skewed populations encountered in the 
analysis of pay data. Simply asking for rates of pay, without standard deviation measures, would 
not help with parity/disparity analysis; doing so would not only be burdensome to employers but 
would also reduce overall accuracy. Based on these considerations, we recommend collecting 
aggregate compensation information for the 10 EEO-1 occupation categories into pay bands. 
This strategy is currently used by OES, whose wage data are based on narrow pay bands that are 
defined both through hourly and corresponding annual rates. Micklewright and Schnepf’s 2007 
study finds that although collecting income data in bands rather than on a continuous scale 
results in a loss of information, that loss would likely be small and of little concern to many 
researchers, and is balanced by reduced cost and burden.23 In addition, pay bands would allow 
computation within-occupation variation, across occupation variation, and overall variation.24  

We also recommend collecting total hours worked — in addition to reporting the number of 
employees that fall within each pay interval by occupation, race/ethnicity and gender, employers 

20 Unpublished report from February 2012 Forum to Modernize EEO Data Collection. 
21 National Research Council 2012.  
22 Clark, W.A.V., and K.L. Avery. “The Effects of Data Aggregation in Statistical Analysis.” Geographical Analysis 
8(4), 430.  
23 Micklewright, J., and S.V. Schnepf. 2007. “How Reliable Are Income Data Collected With a Single Question?” 
IZA Discussion Paper, no. 3177. Available at http://ftp.iza.org/dp3177.pdf.  
24 Micklewright and Schnepf 2007. 

9 
 

                                                           

http://ftp.iza.org/dp3177.pdf


will provide the total number of hours worked by all employees in each cell. The number of 
hours worked is available in HRIS systems or can be downloaded with the compensation data 
and, according to HRIS experts, the total number of hours worked is information that is part of 
all payroll systems. This information is available for the previous quarter, the previous four 
quarters, and also for the previous year, depending on the date specified in the query. Nearly all 
payroll systems maintain these data. The number of hours worked is collected along with the 
wage information. For respondents who outsource their payroll, this variable could be added to 
the one-time reporting query that is written to download income data. Asking respondents to 
provide the total number of hours worked would impose a minimal burden. In addition to 
collecting data on the number of employees in each occupation by race and gender, calculating 
average hours worked (using total hours worked reported by employers) will increase analysis 
possibilities and balance out the marginal increase in reporting burden. Although this places the 
burden of calculating average hours worked on EEOC, it will minimize the burden on the survey 
respondent. 

This report recommends that EEOC collect compensation data from employers using the W-2 
definition of total income but to do so using pay bands for the 10 EEO-1 occupation categories 
rather than point estimates or pay rates. In addition to the compensation data, total hours worked 
by each group should also be collected to increase the value of the data and to account for pay 
differences due to variation in the number of hours worked.  

Overview of Methodology Followed by BLS for the OES Survey 
The semiannual OES survey collects occupational employment and wage rates for all 50 states 
using interval data.25 The following section provides an overview of the methodology followed 
in updating intervals, nonrespondents, and estimating measures of central tendency. 

OES collects wage data within 12 nonoverlapping intervals. The lowest interval (Interval A) is 
based on federal and state minimum wage rates and the uppermost interval (Interval L) is based 
on inflation. The bounds for all other intervals in between are calculated using an exponential 
equation that ensures that the relative maximum error and relative standard error within each 
interval are approximately the same.  

Lower bound A = state minimum wage rate 

Lower Bound B = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑙𝑙𝑙𝑙𝑙𝑙+�
𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙

11 �� 

Lower Bound C = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑙𝑙𝑙𝑙𝑙𝑙+2∗�
𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙

11 �� 

Lower Bound D = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑙𝑙𝑙𝑙𝑙𝑙+3∗�
𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙

11 �� 
 

where 11 stands for the number of closed intervals, ln A is the natural log of the lower bound of 
interval A, and ln L is the natural log of the chosen lower bound of interval L.   
 
According to BLS, interval boundaries are to be user friendly and end in $x.00, $x.25, $x.50, or 
$x.75, and interval A must encompass the federal minimum wage rate as well as minimum wage 

25 U.S. Bureau of Labor Statistics 2015a.  
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rates for all states.26 In addition, the lower bound of interval L must be aged properly to account 
for inflation. In the words of a BLS economist, “the importance of the bounds of the wage 
intervals lies in trying to keep the relative maximum error (RME) and relative standard error 
(RSE) for each interval roughly the same.” She defined RME and RSE as follows: 

RSE = 
�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ2

12

𝑋𝑋�
 

 

 
RME = .5*𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ

𝑋𝑋� , 
 
where Width is the width of the interval and 𝑋𝑋� is the midpoint (or arithmetic mean) of the 
interval. 

 
BLS staff also said that “the bounds are examined over time, comparing the employment 
distributions and how much interval L changes after aging it. The interval boundaries are 
examined annually but updated only when the lower bound of Interval L needs to be adjusted as 
a result of wage aging.”27, 28 
 
OES imputes data for nonrespondents using a two-step process. The first step is to identify donor 
respondents with similar characteristics for employment, geographic area, industry, and 
employment size. In the second step, employment distribution is imputed across wage 
intervals.29  

BLS has compared various methods to estimate the mean wage rates, including interval 
midpoints and geometric means. Through this comparison, BLS found that, although the 
geometric mean worked well, using mean wages calculated from the NCS was the best option. 
Mean wage rates for each interval, derived using external point data from the NCS, are currently 
used to calculate occupational mean wages. Occupation mean wage variances are estimated 
using a Taylor series linearization technique. The primary component that accounts for 
variability is estimated using the standard estimator of variance for a ratio estimator. NCS data 
are used to calculate some components of wage variance.30 Hesley and Duff have provided a 
method using O’Malley’s Piecewise Quadratic Density Estimator (PQDE) to calculate mean 
wages using binned data.31 Although the PQDE method seems to have worked well for most 
intervals, its application for interval A data requires more research. 

26 Email correspondence from Audrey Watson, economist, Occupational Employment Statistics, U.S. Bureau of 
Labor Statistics. April 2015. 
27 Kasturirangan, M., S. Butani, and T. Zimmerman. 2007. “Methodologies for Estimating Mean Wages for 
Occupational Employment Statistics (OES) Data,” 3–5.  
28 Information provided by Bureau of Labor Statistics, OES Statistics and Methodology Group, 1 April 2015. 
29 U.S. Bureau of Labor Statistics 2015a, 10–11. 
30 U.S. Bureau of Labor Statistics 2015a, 16–22. 
31 Hesley, T.E., and M. Duff. 2009. “Application of Piecewise Quadratic Density Estimator to OES Wage Data.” 
U.S. Bureau of Labor Statistics. Available at www.bls.gov/osmr/pdf/st090150.pdf.  
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Measure of Central Tendencies and Dispersion 

Central tendency is a single value that is most representative of the collected data. The mean, 
median, and mode are the three commonly used measures of central tendency. The average, or 
mean, is the most commonly used measure of central tendency for any set of data, although it 
might not always be the best fit. Because the mean is based on each and every value in the data 
set, it is susceptible to skewness based on extreme values. The median, on the other hand, is not 
sensitive to outliers because it represents the value that lies in the middle.  

 

 
 

SSA and OES data show similar trends between average and median compensation/wages and 
have found that the median compensation is substantially and consistently lower than the 
average.32 Although the mean is the most commonly used measure of central tendency and is 
generally considered a very resilient measure, in some situations the median may be preferable to 
the mean. In a positively skewed distribution such as a typical pay distribution, the mean is 
located to the right of the median, toward the right tail of the distribution.  

The mean and the median each have advantages and disadvantages that should be seen as 
tradeoffs of statistical or substantive properties, or computational procedures necessary to obtain 
these measures. As mentioned above, the mean is based on every value in the data and, unless 
otherwise specified, weights each observation equally. As a result, the mean is a good 
representative of the data. Statistical properties of the sample means are well understood through 
such tools as the central limit theorem, which allows a normal approximation of the sampling 
distribution of the mean in large samples. The mean is also closely related to the standard 
deviation, the most common measure of dispersion; a link to a linear regression model can be 
established by treating group means as coefficients of the group indicators in a regression model. 
However, the mean is sensitive to extreme values, especially in small samples.  

32 Social Security Administration. n.d. “Measures of Central Tendencies for Wage Data.” Available at 
http://www.ssa.gov/oact/cola/central.html. 
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On the other hand, the median may be a better indicator if the data values are skewed or have 
outlier(s). A generalization of median is to include auxiliary information that leads to the 
quantile regression model.33 The median, however, only uses the values in the middle of the data 
and does not reflect information in the tail of the distribution. Statistical inference for medians is 
more complicated than that for means. The version of the central limit theorem that can be used 
to obtain the normal distribution of the median in large samples depends on a complicated 
ancillary statistic that is difficult to estimate, and the missing data add to the difficulty.   

Often, having both the mean and the median calculated and reported is best; however, doing so 
might considerably increase the burden on the agency. Although mean earnings data are 
consistently higher than the median, reflecting asymmetric distribution, they are the most reliable 
measure of central tendencies and, along with a measure of dispersion, will yield valuable 
information. If the standard deviation is collected along with the mean, then statistical inference 
for the mean will be possible using the standard results, such as Student’s t-distribution of the 
test statistic comparing the means of two samples. 

A measure of dispersion provides a summary statistic that indicates the magnitude of the 
distribution dispersion. There are two different measures of dispersion: the range or interval 
measure, which is the difference between the two extreme values and interquartile range, and 
deviation, which is the average distance of the data points from the mean, such as variance, 
coefficient of variance, standard deviation, and median absolute deviation. 

Range is the simplest to calculate; it is the difference between the two extreme values of the 
distribution. However, because the range calculation uses only the two extreme values of the 
data, it ignores a considerable amount of information. In continuous distributions with the tails 
extending to infinity (such as the earnings distributions), the range grows with the sample size 
and does not converge to any population quantity. Interquartile range is defined as the difference 
between the 25th and 75th percentile. Although interquartile range is not affected by extreme 
values (because it considers the middle 50 percent of the observations) and can be used as a 
measure of variability in open-ended distributions, it may be poorly defined in small samples, 
where its calculation depends on the working definitions of the percentiles.  

Variance is defined as the average squared distance between the data values and the mean. 
Because variance is a symmetric function of the data points based on the sum across all data, it 
shares many conceptual properties, advantages, and disadvantages with the mean and therefore is 
also affected by outliers. Variance is the only measure of wage inequality that is amenable to an 
additive decomposition by sources, or factors, such as straight line pay versus bonuses versus the 
total value of benefits.34  

One of the most commonly used measures of dispersion is the standard deviation. Standard 
deviation is the square root of the variance and, like variance, uses all the observations in a data 
set symmetrically and is sensitive to outliers. Interpretation of the standard deviation for skewed 
distributions may be complicated.  

33 Koenker, R. 2005. Quantile Regression. Econometric Society Monographs, Cambridge University Press. 
34 Shorrocks ,A.F. 1982. “Inequality Decomposition by Factor Components.” Econometrica 50(1), 193–211. 
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The coefficient of variation (CV) is the ratio of the standard deviation to the mean. Provided that 
the standard deviation and the mean are collected, CV can be easily computed. If a lognormal 
distribution of pay is implicitly assumed, then standard deviation of the residuals corresponds to 
the coefficient of variation of the distribution of pay. CV is a unit-free measure, and as such is 
relatively stable between groups that differ in mean pay. CV, however, relies on the collection of 
the standard deviation and the mean and also inherits sensitivity to outliers from the source 
statistics (mean and standard deviation). 

Median absolute deviation (MAD) is the median of the absolute values of the deviations from the 
median. Although this measure is very robust to outliers for skewed populations, MAD treats the 
positive and negative deviations from the median differently; thus, its interpretation is 
complicated. 

In a study published by BLS, authors Carl Barsky and Martin Personick compared the used index 
of dispersion and coefficient of variance to measure differences in the degree of wage dispersion 
among various industries.35 The index of dispersion was calculated by dividing the interquartile 
range (the difference between the third and first quartiles) by the median (second quartile). In 
this study the authors concluded that the dispersion measured by both methods was similar, and 
neither method changed the study’s result. However, they considered the coefficient of variation 
a more refined measurement because it is calculated based on each observation of the wage 
distribution, and no information is lost. 

The measures of central tendency and dispersion reviewed above naturally fall into the moment-
based measures (that is, those defined based on sums over all cases; mean, variance, and standard 
deviation) and order-statistics-based measures (median, range, interquartile range, MAD). The 
moment-based measures, as a rule, have statistical properties that are better understood; 
however, because they give extreme observations as much weight as observations in the middle 
of the range, moment-based measures are sensitive to outliers. The order-statistics-based 
measures, although more robust to outliers, are less frequently used in statistical practice. The 
fact that they use only a handful of observations around the required percentile (the 50th 
percentile for the median; the 25th and the 75th for the interquartile range) may be seen as a 
disadvantage in describing a whole demographic group in a given cell of the EEO form. 

Computing or collecting the standard deviation or the coefficient of variance along with the 
mean will make statistical inference for the mean possible by using standard results such as 
Student’s t-distribution of the test statistic comparing the means of two samples.  

Calculating Central Tendencies and Dispersion for Binned Data 
Many studies have been published that discuss the benefits and challenges of collecting interval 
data and the need for methodologies that can be applied to produce reliable summary estimates 
for such data sets. Several methods have been proposed for estimating the mean for interval data, 
including the arithmetic mean (midpoint) and geometric mean. Arithmetic mean is the sum of the 
upper and lower bound of each interval, divided by 2. OES previously used this method to 
estimate wage interval mean. Geometric mean is the product of upper and lower bound of the bin 

35 Barsky, C.B., and M.E. Personick. 1981. “Measuring Wage Dispersion: Pay Ranges Reflect Industry 
Traits.” Monthly Labor Review 104, 35-41.  
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to the power of 1/2. In an article published by OES, the performance of these methodologies was 
compared, and the authors noted that all the methods performed well.36  
In a 2005 study, Hozo et al. discussed methods to estimate mean and variance for interval data 
using the median, range, and sample size. The researchers showed that median can be used to 
estimate mean when the sample size is larger than 25. For smaller samples, they devised a new 

formula, , that can be used to estimate the mean using the values of the median (m) 
and of the low and high end of the range (a and b, respectively). Range was also used to estimate 
the standard deviation. The study authors used estimators such as Range/4 for a normal 
distribution (the best estimator for the standard deviation and variance for sample sizes greater 
than 15 and less than 70), and Range/6 for any random distribution (for sample sizes above 70). 
For very small samples (up to 15), the best estimator was determined to be 

 , 
where a is the lower bound of the interval, b is the upper bound, and m is the median. 37  

In another study published by BLS in 2009, Hesley and Duff found that O’Malley’s PQDE is a 
more effective method to generate occupational wage estimates than the current OES practice of 
using NCS data. The PQDE “has the advantage of being able to more fully use the information 
available in large quantities of interval data by considering both the proportions in the intervals 
and their relationship to adjacent intervals.” The researchers found that OES Intervals B through 
K “are adequately represented by the PQDE at the national major occupation group level of 
detail.” For the end intervals, some manipulations to the upper Interval L allow it “to be 
reasonably estimated using an exponential function of the estimator.” Interval A, the researchers 
note, requires additional research.38 Hesley and Duff compared the current OES method and the 
PQDE method by applying a new random group Jackknife variance estimator to both to calculate 
variance estimates on mean wages; they found that PDQE generated mean wages had a lower 
variance for 62 percent of the occupations.39 

An exhaustive literature search did not show any applicable examples of the PQDE method 
being utilized for large data samples including applications for estimating sparse cell values. A 
detailed exploration of more applications of this method is outside the scope of this study. More 
information on the PDQE method is provided in Appendix A.

36 Kasturirangan et al. 2007.  
37 Hozo, S.P., B. Djulbegovic, and I. Hozo. 2005. “Estimating the Mean and Variance From the Median, Range and 
the Size of a Sample.” BMC Medical Research Methodology 5(13), doi:10.1186/1471-2288-5-13.  
38 Helsey and Duff 2009. 
39 Helsey and Duff 2009, 1200. 
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Section II: Statistical Issues in the Analysis of Pay Disparities 
The following section reviews the appropriate earnings’ summaries for statistical analysis and 
testing. It concentrates on testing for pay disparities by protected target groups, such as those 
based on race, ethnicity, religion, gender, pregnancy status, national origin, age (40 or older), 
disability, or genetic information. 

General Considerations 
The primary complication in establishing pay discrimination is that, in well-functioning 
economic systems, market forces determine one’s level of pay, and variation in pay is both 
necessary and inevitable. Employees who demonstrate higher productivity command higher 
wages because they produce more products or services for their employers and may have better 
outside opportunities. Federal legislation forbids discrimination in pay based on race, ethnicity, 
religion, sex (including pregnancy), national origin, age (40 or older), disability, or genetic 
information. In other words, although differences in pay that can be associated with the labor 
market characteristics of an employee are natural and necessary to bring labor markets into 
equilibrium and align the economic interests of employees and employers, the differences 
beyond these characteristics are less desirable and, in the case of differences that can be 
associated with protected groups, are prohibited. 

Wage Equation as the Primary Tool 
To reflect this understanding in discussing pay discrimination, the Committee on National 
Statistics (CNSTAT) puts forward a popular model for labor income known in labor economics 
as the Mincer equation: 

 𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1′𝑑𝑑𝑖𝑖 + 𝛽𝛽2′𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 (1) 

where 𝑦𝑦𝑖𝑖 is the pay measure for individual 𝑖𝑖, 𝑑𝑑𝑖𝑖 is a vector of their design variables that indicate 
the demographic group, 𝑥𝑥𝑖𝑖 is a vector of control variables that can have a justifiable impact on 
difference in pay (such as education, certification, or work experience), 𝜀𝜀𝑖𝑖 is the regression error 
with zero mean and variance 𝜎𝜎2, and 𝛽𝛽1 and 𝛽𝛽2 are the vectors of regression coefficients. 40, 41 
For an economic process that is characterized by no discrimination, 𝛽𝛽1 = 0; this is a statistical 
hypothesis that can be tested once the regression model (1) is estimated. Good notes that  

[b]ecause of the complexity of the multiple regression model, it can be attacked on a 
variety of grounds: 

• The data are incomplete or inaccurate. 
• Essential variables are omitted. 
• Tainted variables are included. 
• Distinct groups are wrongly aggregated in a single regression. 
• The model is not unique. 

40 Mincer, J. 1974. Schooling, Experience, and Earnings. National Bureau of Economic Research. New York: 
Columbia University Press. 
41 National Research Council 2012. 
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• The model is a poor predictor and thus inadequate or incorrect. 
• The wrong methodology is used to derive the coefficients. 
• The regression assumptions are not satisfied.42 

Regression equation (1) works best in the context of large-scale data across multiple locations 
and industries. In the context of the data for a single establishment, the different demographic 
groups can be analyzed and contrasted with one another within that establishment. When the 
distribution of pay in a minority group (such as Hispanic women) is different from the 
distribution of pay in a reference group (such as single-race white men), this difference may 
indicate that an additional investigation may be required for this employer. Without explicitly 
accounting for the relevant control variables, however, meaningful comparisons between groups 
that can provide evidence of discrimination must be based on sufficiently narrow categories of 
job groups, occupations, and other variables determining the natural differences in pay. Good 
suggests that “in a discrimination case, the composition of the sample should be comparable 
(age, race, sex, years of experience) to that of the plaintiff… in all aspects but the one at issue.”43  

CNSTAT argues that the best-fitting regression model should be chosen based on statistics such 
as Mallows’ 𝐶𝐶𝑝𝑝 or information criteria.44 Although this makes sense in many statistical 
applications because it reduces the number of degrees of freedom required to estimate all the 
model parameters, several issues are associated with model selection in the context of 
discrimination. First, reducing the degrees of freedom may not be a straightforward process, as 
discussed in “Degrees of Freedom” discussion below. Second, inference, including correctly 
determining standard errors and confidence intervals around predictions formed from selected 
models, needs to account for model uncertainty.45 Finally, both the design variables and the 
control variables play very specific and very distinct roles in equation (1). The design, or 
demographic, variables are included to test for discrimination, and omitting them from the model 
precludes conducting the required tests. The control variables are included to account for 
economically viable differences among industries, locations, job categories, and qualifications 
and certifications, among others. If these viable differences are related to the demographic 
variables — for example, specific locations that have unique demographic structures or certain 
demographic groups that have different education or certification profiles — then 
multicollinearity may drive the valid control variables to become insignificant, and if they are 
omitted from the model, the explanatory power is shifted to the demographic variable, creating 
the appearance of discrimination. Gastwirth cites the existing discrimination cases 
recommending that “regression analysis [does not need] to incorporate all measurable variables 
but should account for the major ones,” and gives example of cases in which model 
specifications that were too terse (for example, including only race and seniority without 
education or work experience) were deemed inadmissible in court.46 Some predictors may be 

42 Good, P. 2001. Applying Statistics in the Courtroom: A New Approach for Attorneys and Expert Witnesses. Boca 
Raton, Florida: Chapman & Hall/CRC, 186. 
43 Good 2001, 129. 
44 Committee on National Statistics 2012. 
45 Efron, B. 2014. “Estimation and Accuracy After Model Selection.” Journal of the American Statistical 
Association 109(507), 991–1006, with discussion and rejoinder, 1007–1022. 
46 Gastwirth, J.L. 2000. “Issues Arising in the Use of Statistical Evidence in Discrimination Cases.” In: Gastwirth, 
J.L. (ed.), Statistical Science in the Courtroom. New York: Springer, 227–243. 
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treated with caution; for example, if minority employees with adequate qualifications are placed 
in lower-level jobs, then the job title variable suffers from the existing discriminatory practices 
that the statistical analysis is aimed at uncovering (that is, the explanatory variable is 
endogenous, in econometric terms) and therefore may not be a suitable regressor.47 To the extent 
possible, we would recommend retaining all the relevant variables as long as the sample sizes are 
sufficient; an often-used rule of thumb is to have 10 observations per parameter in the regression 
model.48 In discussing discrimination in hiring, Gastwirth writes, “As the defendant controls 
what information employment decisions and what data is preserved in its files, it is reasonable to 
assume that information on the important factors for on-the-job success are systematically 
obtained for all applicants or eligible employees and kept in their personnel records. This is why 
plaintiffs should consider all the job-related factors for which the employer has gathered data. If 
they do, then the employers should not be able to use information that was not obtained for all 
job candidates to rebut an inference derived from a statistical analysis using their complete files, 
since this would not give the plaintiffs a ‘full and fair opportunity’ to show pretext.”49 This 
advice clearly will be equally applicable to the study of compensation patterns. 

Applicable Statistical Approaches 
When the regression approach cannot be used (for example, when no employee-level microdata 
are collected and aggregated data need to be used instead), other methods would need to be used 
instead. Because EEOC’s main task is measuring, interpreting, and testing pay disparities based 
on aggregate group-level measures, most of the statistical procedures discussed in this report are 
intended to identify differences between groups defined, for instance, by gender, race, and 
ethnicity, or a combination thereof. Several statistical approaches could be used: 

1. Descriptive rankings. An investigator can sort business establishments by a chosen measure 
of pay inequality/dispersion and focus more in-depth analysis on those with the highest 
values of that measure. Such rankings, however, should be approached with caution. Similar 
procedures have been used in education research to identify the best-performing schools. 
Descriptive rankings would indicate that small schools often achieve the greatest gains in 
student performance. However, this result is simply an artifact of higher sampling variance 
due to lower sample size.50 Rankings may therefore need to be based on measures that are 
adjusted for measures of imprecision linked to the size of the establishment or to the sizes of 
the demographic cells within the establishment. 

2. Frequentist modeling statistical inference. The data are assumed to come from an 
economic process, and outcomes such as pay are assumed to follow a specific distribution 
(such as normal, binomial, or lognormal). The measures of statistical uncertainty are derived 
by considering the outcomes to be random draws from these distributions. Distributions of 
statistics derived from the data, such as group means or regression coefficients, are obtained 
by appropriately aggregating over the distributions of the original outcomes. An investigator 

47 Wooldridge, J. 2010. Econometric Analysis of Cross Section and Panel Data, 2nd edition. Cambridge, 
Massachusetts: MIT Press. 
48 Long, J.S. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, 
California: SAGE. 
49 Gastwirth 2000. 
50 Kane, T. J., and D. O. Staiger. 2002. The Promise and Pitfalls of Using Imprecise School Accountability 
Measures. Journal of Economic Perspectives, 16(4): 91-114.  
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then identifies the establishments that demonstrate pay gaps that are statistically significantly 
different from the assumed status quo value (such as zero, indicating no difference between 
groups) or from the population value, for example, by using an F-test based on regression (1). 
This is conceptually similar to what is currently being done using the data from EEO-1 forms 
to identify discriminatory practices in hiring. 

3. Survey inference. The data are assumed to come from a fixed population. The measured 
characteristics of the observation units (employees’ demographics and pay) are assumed to 
be fixed quantities, and the only randomness is the result of taking random samples 
according to a prespecified probability sampling design. Many large scale labor statistics 
programs, such as the National Compensation Survey and Occupational Employment 
Statistics, rely on the data collected via a complex survey design. Within the existing data 
collection EEOC protocols, however, information is provided for all eligible employees of 
the establishment. Therefore, no sampling variability is present in the numerical summaries,, 
and as a result, there are always nonzero differences in pay among demographic groups 
(unless all employees work fixed hours for a fixed wage, such as the minimum wage, 
resulting in identical pay for each person). There are modifications of survey inference to 
bring it closer to the model-based frequentist inference as described above, in which the 
finite population at hand is assumed to have come from a statistical model.51,52 As the sample 
size approaches the population size, the sampling variability component shrinks to zero, 
leaving the model uncertainty as the leading term and reproducing the frequentist modeling 
results for the censuses of observation units. As with the frequentist approach, discrimination 
can be tested using a Wald F-test in the context of regression (1). 

4. Bayesian inference. As with the frequentist paradigm, the data are assumed to be coming 
from an economic process, and outcomes are assumed to follow a specific distribution (such 
as normal, binomial, or lognormal). However, like the survey paradigm, the Bayesian 
paradigm treats the data as fixed, whereas the measures of uncertainty are associated with the 
knowledge, or lack thereof, of the parameters generating the data at hand. Without any data, 
knowledge about the parameters is described by a prior distribution of the parameter values. 
A vague prior may be used to indicate no knowledge whatsoever, whereas stronger priors 
that are more tightly concentrated near the parameter values known to be typical may reflect 
existing knowledge, such as that derived from prior studies, or the assumed situation, such as 
assuming no pay gaps. The observed data are then used to update the distribution of 
parameters and produce a posterior distribution through Bayes’ theorem.53 In the context of 
government statistics applications, Bayesian methods have been used very successfully to 
create synthetic microdata that protect the individual identity.54, 55 Special versions of these 
methods can be applied to create synthetic data sets for grouped income categories used in 

51 Brewer, K. 2002. Combined Survey Sampling Inference: Weighing Basu’s Elephants. London: Arnold. 
52 Demnati, A., and J.N.K. Rao. 2010. “Linearization Variance Estimators for Model Parameters From Complex 
Survey Data.” Survey Methodology 36(2), 193–202. 
53 Gelman, A., and J.B. Carlin. 2013. Bayesian Data Analysis, 3rd edition. Boca Raton, Florida: Chapman and 
Hall/CRC. 
54 Reiter, J.P. 2002. “Satisfying Disclosure Restrictions With Synthetic Data Sets.” Journal of Official Statistics 
18(4), 531–543. 
55 Drechsler, J. 2011. Synthetic Datasets for Statistical Disclosure Control. New York: Springer. 
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the pay bands of EEO-4 forms.56 Unlike frequentist testing, Bayesian hypothesis testing uses 
Bayes factors. 

5. Permutation testing. In this branch of frequentist statistics, hypotheses are formulated in the 
same way as in the frequentist approach, but the distribution of the test statistic is derived by 
rearranging the labels on the observations.57 Under the null hypothesis of no effect of the 
group membership, labels of the group categories are independent of the outcome and 
therefore can be randomly assigned, or permuted. The target statistic is computed for 
permuted data, the process is repeated a sufficient number of times, and the p-value is 
computed as the fraction of times that the value of the test statistic the permutations generate 
is further from the null than the observed value. The approach can also be used in regression 
models when the data are permuted in a way consistent with the null hypothesis. We discuss 
permutation testing in more detail in “Permutation Testing ” below as it is a somewhat lesser 
known statistical method. 

In some of these analyses, unbalanced groups with small sample sizes pose statistical challenges 
resulting in reduced degrees of freedom, wider confidence intervals, and lower power of 
statistical tests. Statistical properties of the estimates and tests are often determined by the 
sample size of the smallest group(s). For some racial and ethnic minority groups, the counts in 
small establishments may be in the single digits, and some cells will be empty. 

Distributional Characteristics and Comparisons of Distributions 
Pay gaps among different demographic groups can be investigated by comparing pay 
distributions. When the distribution of pay in a minority group, such as Hispanic women, is 
different from the distribution of pay in a reference group, such as single-race white men, this 
may indicate that additional investigation of an employer may be required.  

Earnings distributions and income distributions, in general, are characterized by skewness and 
heavy right tail. This means that the mode and the median of the pay distribution are lower than 
the mean (that is, most pay figures are lower than the mean), and that there are high levels of pay 
observed with probabilities that exceed those found in the normal distribution (for example, more 
than 5% of the distribution is found outside of the mean ± two standard deviations range). 
Therefore, our general interest will be in testing the following hypotheses:  

𝐻𝐻0: all target groups have the same distribution of pay 

compared with 

 𝐻𝐻1: at least two groups have different distributions of pay. (2) 

By target groups, we mean groups identified by protected demographic characteristics, such as 
race, religion, sex, national origin, age, or combinations of these characteristics. In situations 
where a certain group can serve as a reference, another pair of hypotheses of interest could be 

𝐻𝐻0: all target groups have the same distribution of pay 

56 Heitjan, D. F., and D. B. Rubin. 1990. Inferences from coarse data via multiple imputation with application to age 
heaping. Journal of the American Statistical Association, 85 (410), 304–314.  
57 Good, P. 2005. Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd edition. New York: Springer. 

20 
 

                                                           



compared with 

 𝐻𝐻1′ : at least one minority group has a distribution of pay that is different from the reference 
group.  (3) 

Because comparing full distributions is likely to be complicated and often relies on having 
precise pay measurements for each individual in the sample, some simplifications are often 
pursued, such as comparing distributions in terms of their means, medians, means + variances, or 
some other meaningful summaries. Direct testing of the equality of distributions of two or more 
groups, or summaries of these distributions, makes a very important implicit assumption that the 
groups are homogeneous with respect to the control variables. This assumption is relaxed when 
the regression approach based on wage equation (1) is being used. The standard test based on 
Mincer wage equations of labor economics is to test whether the demographic group is a 
significant predictor of the (differences in) log wages. Because regression models such as (1) 
deal with differences in (conditional) means, and that the log transformation converts differences 
in ratios into differences in the absolute levels of the transformed variable, this test checks for 
multiplicative differences between groups (such as whether females earn the same pay as males 
versus whether their pay is proportionally lower than that of males). In other words, rather than 
testing whether the distributions are identical, this test assumes that the distributions only differ 
by a multiplicative factor and tests for that specific aspect of the differences in distributions. 
Outside of regression models, comparisons between groups must be based on sufficiently narrow 
categories of job groups, occupations, and other variables that are associated with labor market 
characteristics determining the natural differences in pay.  

Comparisons of Specific Aspects of the Pay Distribution 
The most common comparison of two samples is that of their means. In his comment on 
Vinod,58 Gastwirth shows that the difference in means is the natural expression of the overall 
economic advantage one group has over the other.59 For distributions that are approximately 
normal, a very common test is the t-test (sometimes referred to as the Welch t-test, as opposed to 
the original t-test by Student, which uses a pooled variance estimate) 

 𝑡𝑡 = 𝑦𝑦�1,𝑛𝑛1−𝑦𝑦�2,𝑛𝑛2

�𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠2
2

𝑛𝑛2

 (4) 

that needs to be referred to the Student t-distribution with degrees of freedom, 

 𝜈𝜈 =
�𝑠𝑠1

2

𝑛𝑛1
+𝑠𝑠2

2

𝑛𝑛2
�
2

�
𝑠𝑠1
2
𝑛𝑛1

�
2

𝑛𝑛1−1
+
�
𝑠𝑠2
2
𝑛𝑛2

�
2

𝑛𝑛2−1

  (5)  

58 Vinod, H.D. 1985. “Measurement of Economics Distance Between Blacks and Whites.” Journal of Business and 
Economic Statistics 3(1), 78–88. 
59 Gastwirth, J.L. (1985). “Comment on ‘Measurement of Economics Distance’ by H. D. Vinod.” Journal of 
Business and Economic Statistics 3(4), 405–407. 
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(see “Degrees of Freedom in Unbalanced Groups” for a discussion of degrees of freedom). 60 
While the t-test compares only two groups, a generalization to multiple groups is provided by 
analysis of variance (ANOVA). The explicit expressions are omitted from this report, as this is a 
standard technique implemented in any statistical package.61 Generalizations of Satterthwaite’s 
formula (5) for degrees of freedom are also straightforward. 

Another common comparison of distributions is in terms of their variances through Bartlett’s 
test: 

 𝑣𝑣 =
(𝑛𝑛−𝑘𝑘) 𝑙𝑙𝑙𝑙 𝑆𝑆𝑝𝑝2−∑ �𝑛𝑛𝑗𝑗−1� 𝑙𝑙𝑙𝑙 𝑆𝑆𝑗𝑗

2𝑘𝑘
𝑗𝑗=1

1+ 1
3(𝑘𝑘−1) �∑ 1

𝑛𝑛𝑗𝑗−1
− 1
𝑛𝑛−𝑘𝑘

𝑘𝑘
𝑗𝑗=1 �

, 𝑛𝑛 = ∑ 𝑛𝑛𝑗𝑗 ,  𝑆𝑆𝑝𝑝2 = 1
𝑛𝑛−𝑘𝑘

∑ �𝑛𝑛𝑗𝑗 − 1�𝑆𝑆𝑗𝑗2,  𝑆𝑆𝑗𝑗2 = 1
𝑛𝑛𝑗𝑗−1

∑ �𝑦𝑦𝑗𝑗𝑗𝑗 −
𝑛𝑛𝑗𝑗
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1

𝑘𝑘
𝑗𝑗=1

𝑦𝑦�𝑗𝑗�
2
(6), 

presented here in the form appropriate for comparison of variances of k groups. 

All of the t-tests, ANOVA, and especially the Bartlett variance tests are known to be sensitive to 
departures from normality. Johnson gave a correction for skewness of the one-sample t-test, and 
Cressie and Whitford proposed a two-sample generalization: 

 𝑢𝑢 = 𝑦𝑦�1,𝑛𝑛1−𝑦𝑦�2,𝑛𝑛2

�𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠2
2

𝑛𝑛2

+ (𝐵𝐵1∗ − 𝐵𝐵2∗), 

 𝐵𝐵1∗ =

𝑏𝑏1𝑠𝑠1
3

6𝑛𝑛1
2�

𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠2
2

𝑛𝑛2
� 
+
𝑏𝑏1𝑠𝑠1

3�𝑦𝑦�1,𝑛𝑛1−𝑦𝑦�2,𝑛𝑛2�
2

3𝑛𝑛1
2�

𝑠𝑠1
2
𝑛𝑛1

+
𝑠𝑠2
2
𝑛𝑛2

�
2

�𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠2
2

𝑛𝑛2

, 𝑏𝑏𝑗𝑗 =
∑ �𝑦𝑦𝑗𝑗𝑗𝑗−𝑦𝑦�𝑗𝑗�

3𝑛𝑛𝑗𝑗
𝑖𝑖=1

𝑠𝑠𝑗𝑗
3  (7) 

with 𝐵𝐵2∗ defined by flipping the sample indices 1 and 2 and 𝑏𝑏1, 𝑏𝑏2 being the estimates of 
skewness in the corresponding samples.62, 63 Interestingly, corrections for kurtosis are of a higher 
order, in that corrections for skewness have a greater effect in small samples. Cressie and 
Whitford also note that the preliminary test of equal variances that may lead to apparent 
simplification of the expression “was not helpful,” which supports the use of the Welch form (4) 
of the t-test.64 Also, in applying (7), note that the finite sample skewness and kurtosis have 
algebraic limits,65 which renders them only partially useful for small samples: 

60 Satterthwaite, F.E. 1946. “An Approximate Distribution of Estimates of Variance Components.” Biometrics 
Bulletin 2(6), 110–114. 
61 Rao, C.R. 2001. Linear Statistical Inference and Its Applications, 2nd ed. New York: Wiley. 
62 Jonson, N. J. 1978. Modified t Tests and Confidence Intervals for Asymmetrical Populations. Journal of the 
American Statistical Association, 73 (363), 536–544.  
63 Cressie, N.A.C., and H.J. Whitford. 1986. “How To Use the Two Sample t-Test.” Biometrical Journal 28(2), 
131–148. 
64 Cressie and Whitford 1986. 
65 Cox, N.J. 2010. “The Limits of Sample Skewness and Kurtosis.” The Stata Journal 10(3), 482–495. 
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 |𝑏𝑏| ≤ 𝑛𝑛−2
√𝑛𝑛−1 

 . (8) 

If the sample size is insufficient to produce an estimate of skewness comparable to the typical 
values of skewness observed elsewhere, then less biased and more stable estimates obtained from 
the population as a whole can be used. 

Corrections for the nonnormal distribution can also be obtained through bootstrap or permutation 
approaches.66, 67 (The permutation approach is discussed below in “Permutation Testing .”) In 
the bootstrap approach, the reference distribution of the test statistic is obtained by sampling, 
with replacement, from the original data, and computing the statistic of interest for the resampled 
data. The data often need to be aligned to ensure that the data to be resampled satisfy the null 
hypothesis.68 Because there may be multiple ways to adjust the data, the problem can become 
fairly complicated. For example, if the mean level of pay is not equal between two groups, either 
the proportional/multiplicative change may be considered, or a shift (that is, an increase by a 
fixed number of dollars) can be considered.  

Several economic measures intended to capture economic effects of inequality and 
discrimination have been proposed in the literature. Suppose that there are two groups to 
compare: the majority group (such as whites or males) and the minority group (such as other 
races or females), and their cumulative distribution functions (CDFs) are given by 𝐹𝐹𝑋𝑋(𝑥𝑥) and 
𝐺𝐺𝑌𝑌(𝑦𝑦), respectively. Vinod defined the projected quantile estimated at 𝑦𝑦0 as 

 𝑦𝑦0∗ = 𝐹𝐹𝑋𝑋−1𝐺𝐺(𝑦𝑦0) (9) 

and economic advantage at the income level of the disadvantaged group 𝑦𝑦0 as 

 𝐸𝐸𝐸𝐸[𝑥𝑥,𝑦𝑦|𝐺𝐺(𝑦𝑦0)] = 𝑦𝑦0∗ − 𝑦𝑦0.69 (10) 

It can be integrated over a range of incomes, with integration over all possible incomes giving 
the difference in mean incomes as discussed by Gastwirth.70 Vinod demonstrated that defined in 
this way, the economic advantage of whites over blacks decreased in real terms between 1967 
and 1979, especially among middle- and upper-middle-class income groups. 

Butler and McDonald used partial moments 

 𝜙𝜙(𝑥𝑥;ℎ) = ∫ 𝑧𝑧ℎ𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑 𝑥𝑥
0

𝔼𝔼[𝑧𝑧ℎ]
 (11) 

to define indices 

66 Luh, W.-M., and J.H. Guo. 2000. “Johnson's Transformation Two-Sample Trimmed t and Its Bootstrap Method 
for Heterogeneity and Non-Normality.” Journal of Applied Statistics 27(8), 965–973. 
67 Good 2005. 
68 Hall, P., and S.R. Wilson. 1991. “Two Guidelines for Bootstrap Hypothesis Testing.” Biometrics 47(2), 757–762. 
69 Vinod 1985. 
70 Gatswirth 1985. 
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 𝑃𝑃(𝑠𝑠, 𝑡𝑡) = 𝜙𝜙𝑌𝑌(𝜇𝜇𝑋𝑋 , 𝑠𝑠) − 𝜙𝜙𝑋𝑋(𝜇𝜇𝑌𝑌, 𝑡𝑡).71 (12) 

In particular, 𝑃𝑃(0,0) = ℙ[𝑌𝑌 ≤ 𝜇𝜇𝑋𝑋]− ℙ[𝑋𝑋 ≤ 𝜇𝜇𝑌𝑌] is the difference between the fraction of the 
minority group with incomes less than the mean income of the majority group and the fraction 
for the majority group with incomes less than the mean income for the minority group, and 
𝑃𝑃(1,1) = 𝔼𝔼[𝑌𝑌|𝑌𝑌 ≤ 𝜇𝜇𝑋𝑋]/𝜇𝜇𝑌𝑌 − 𝔼𝔼[𝑋𝑋|𝑋𝑋 ≤ 𝜇𝜇𝑌𝑌]/𝜇𝜇𝑋𝑋  is the difference between the fraction of total 
income of minority group with income less than the mean income of the majority group and the 
fraction of total income for the majority group with incomes less than the mean income for the 
minority group. Butler and McDonald introduced a social welfare function as the difference 
between aggregate utility functions for the two groups. When the utility is linear in incomes, the 
social welfare becomes 𝑃𝑃(0,0) + 𝑃𝑃(1,1) = 𝑃𝑃(0,1) + 𝑃𝑃(1,0).72 Fitting the generalized beta of 
the second kind (GB2) distribution to Current Population Survey (CPS) household data, they 
demonstrated decline in all four of these indices from 1948 to 1980 when comparing the incomes 
of whites and blacks. They also argued that P(0,0) may be the most relevant measure because of 
its clearer relation with concentration curves and Vinod’s quantile-based measures.73 

The measures described above have been proposed in a descriptive sense of “making sense from 
a substantive economic perspective. The mathematical tradition of income inequality research is 
based on more stringent axiomatic approaches that involve principles such as the exchangeability 
of population members, principles of transfers (a transfer from a richer person to a poorer person 
cannot increase inequality), and homogeneity (a proportional increase in all incomes should have 
a proportional effect on dollar-denominated measures of inequality such as between-group 
differences, or no effect on scale-free measures such as the Gini index).74 Also, for the distance 
between two distributions, the standard axioms on the distance should apply (such as the 
property that the distance of the distribution to itself is zero, as well as the triangle inequality). 
Based on such axioms, Ebert arrives at a class of distances between income distributions given 
by 

 𝑑𝑑𝑟𝑟(𝑋𝑋,𝑌𝑌) = �∫ | 𝐹𝐹𝑋𝑋−1(𝑣𝑣) − 𝐺𝐺𝑌𝑌−1(𝑣𝑣)|𝑟𝑟𝑑𝑑𝑑𝑑1
0 �

𝑟𝑟
, 𝑟𝑟 ≥ 1 .75 (13) 

This measure simplifies to Vinod’s overall economic advantage when one of the income 
distributions is stochastically dominated by the other (see “Stochastic Dominance” below), so 
that the sign of 𝐹𝐹𝑋𝑋−1(𝑣𝑣) − 𝐺𝐺𝑌𝑌−1(𝑣𝑣) is the same for all 𝑣𝑣 ∈ (0,1).76 

Parametric Distribution Modeling and Comparison 
If the error terms 𝜀𝜀𝑖𝑖 in regression model (1) are assumed to have a normal distribution, then the 
distribution of the pay measure 𝑦𝑦𝑖𝑖 is lognormal.77 In other words, if the differences in pay 
between different people are due to small multiplicative factors (for example, if person A is 15 

71 Butler, R.J., and J.B. McDonald. 1987. “Interdistributional Income Inequality.” Journal of Business and Economic 
Statistics 5(1), 13–18. 
72 Butler and McDonald 1987. 
73 Vinod 1985. 
74 Lambert, P.J. 1993. Distribution and Redistribution of Income: A Mathematical Analysis. New York: Manchester 
University Press. 
75 Ebert, U. 1984. “Measures of Distance Between Income Distributions.” Journal of Economic Theory 32, 266–274. 
76 Vinod 1985. 
77 Aitchison, J., and J.A.C. Brown. 1957. The Lognormal Distribution. New York: Cambridge University Press. 
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percent more productive than person B when completing the same tasks), the lognormal 
distribution of the resulting wages would rise. The density of the lognormal distribution is given 
by 

 𝑙𝑙𝑙𝑙 𝑦𝑦 ∼ 𝑁𝑁(𝜇𝜇,𝜎𝜎2);  𝑓𝑓(𝑦𝑦; 𝜇𝜇,𝜎𝜎2) = 1
𝑦𝑦𝑦𝑦√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑙𝑙𝑙𝑙 𝑦𝑦−𝜇𝜇)2

2𝜎𝜎2
�  ,𝑦𝑦 > 0 , (14)  

and its mean and variance are 

 𝔼𝔼𝔼𝔼 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 + 𝜎𝜎2

2
� ,𝕍𝕍𝕍𝕍 = [𝑒𝑒𝑒𝑒𝑒𝑒(𝜎𝜎2) − 1] 𝑒𝑒𝑒𝑒𝑒𝑒(2𝜇𝜇 + 𝜎𝜎2) . (15) 

The grouped lognormal data can be analyzed using the  CDF of this distribution, which can be 
easily found because of its relation to normal distribution: 

 𝐹𝐹(𝑦𝑦;  𝜇𝜇,𝜎𝜎2) = 𝛷𝛷(𝑙𝑙𝑙𝑙 𝑦𝑦−𝜇𝜇
𝜎𝜎

). (16) 

Within the context of the lognormal distribution, a popular alternative measure of dispersion is 
the coefficient of variation, defined as the ratio of the standard deviation of the distribution to its 
mean: CV 𝑦𝑦 = [exp(𝜎𝜎2) − 1]. Whereas the mean of the distribution can be measured in dollars 
and the variance in squared dollars, the coefficient of variation has no units and therefore is 
scale-free. Also, the correction by the mean allows for a meaningful comparison of the 
lognormal distributions that are known to only differ by scaling factors, such as inflation or 
location-based cost of living adjustments. 

In practice, the lognormal distribution does not provide a sufficiently accurate fit to pay data. Of 
the other functional forms that have been proposed, one of the most general is the GB2.78 The 
density of GB2 distribution is given by 

 𝑓𝑓(𝑦𝑦;𝑎𝑎, 𝑏𝑏,𝑝𝑝, 𝑞𝑞) = 𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎−1

𝑏𝑏𝑎𝑎𝑎𝑎𝐵𝐵(𝑝𝑝,𝑞𝑞)�1+�𝑦𝑦𝑏𝑏�
𝑎𝑎
�
𝑝𝑝+𝑞𝑞 ,𝑦𝑦 > 0,𝑎𝑎, 𝑏𝑏,𝑝𝑝, 𝑞𝑞 > 0 , (17) 

where 𝐵𝐵(𝑝𝑝, 𝑞𝑞) is the beta function 

 𝐵𝐵(𝑝𝑝, 𝑞𝑞) = ∫ 𝑡𝑡𝑝𝑝−11
0 (1 − 𝑡𝑡)𝑞𝑞−1 𝑑𝑑𝑑𝑑 = 𝛤𝛤(𝑝𝑝)𝛤𝛤(𝑞𝑞)

𝛤𝛤(𝑝𝑝+𝑞𝑞) , 𝛤𝛤(𝑧𝑧) = ∫ 𝑡𝑡𝑧𝑧−1+∞
0 𝑒𝑒−𝑡𝑡 𝑑𝑑𝑑𝑑 .79 (18) 

 This distribution has absolute moments 

 𝔼𝔼𝑦𝑦𝑘𝑘 =
𝑏𝑏𝑘𝑘𝐵𝐵(𝑝𝑝+𝑘𝑘𝑎𝑎,𝑞𝑞−𝑘𝑘𝑎𝑎)

𝐵𝐵(𝑝𝑝,𝑞𝑞)
 (19) 

from which characteristics such as mean, variance, or inequality indices can be derived.80 It 
generalizes not only the beta distribution but also such distributions as the Dagum distribution81 

78 McDonald, J.B. 1984. “Some Generalized Functions for the Size Distribution of Income.” Econometrica 55(3), 
647–665. 
79 Abramowitz, M., and I.A. Stegun. 1964. Handbook of Mathematical Functions. Washington, DC: National 
Bureau of Standards.  
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and the lognormal distribution implied by the Mincer equations (with 𝑎𝑎 → 0, 𝑞𝑞 → ∞ and 
𝑏𝑏 = (𝜎𝜎2𝑎𝑎2)1/𝑎𝑎,𝑝𝑝 = 𝑎𝑎𝑎𝑎+1

𝜎𝜎2𝑎𝑎2
, 𝑏𝑏 = 𝛽𝛽𝑞𝑞1/𝑎𝑎). To conduct an analysis with the banded data, the 

distribution function was shown in McDonald to have a CDF given by 

 𝐹𝐹(𝑦𝑦;𝑎𝑎, 𝑏𝑏,𝑝𝑝, 𝑞𝑞) = ∫ 𝑓𝑓(𝑥𝑥;𝑎𝑎, 𝑏𝑏,𝑝𝑝, 𝑞𝑞)𝑑𝑑𝑑𝑑 =
�

 �𝑦𝑦𝑏𝑏�
𝑎𝑎

 

1+�𝑦𝑦𝑏𝑏�
𝑎𝑎�

𝑝𝑝

 

𝑝𝑝𝑝𝑝(𝑝𝑝,𝑞𝑞)
𝑡𝑡
0 2𝐹𝐹1 �𝑝𝑝, 1 − 𝑞𝑞;𝑝𝑝 + 1;

 �𝑦𝑦𝑏𝑏�
𝑎𝑎

 

1+�𝑦𝑦𝑏𝑏�
𝑎𝑎�  , (20) 

where 2𝐹𝐹1(⋅) is the hypergeometric function 

 2𝐹𝐹1(𝑞𝑞, 𝑏𝑏; 𝑐𝑐; 𝑧𝑧) = ∑ (𝑞𝑞)𝑛𝑛(𝑏𝑏)𝑛𝑛
(𝑐𝑐)𝑛𝑛

𝑧𝑧𝑛𝑛

𝑛𝑛!
∞
𝑛𝑛=0 ,   (𝑎𝑎)𝑛𝑛 = 𝑎𝑎(𝑎𝑎 + 1) … (𝑎𝑎 + 𝑛𝑛 − 1) .82 (21) 

This function is notoriously difficult to compute in the general case, and approximations to it are 
known for their instability. 

Once the parameters of statistical models describing the demographic groups are estimated, they 
can be compared using standard statistical tests based on the maximum likelihood estimates.83 

Good warns that “forcing a statistical test to depend upon a specific distribution can result in bad 
choices.”84 As a body of empirical literature shows, a parametric modeling of income 
distributions may face the problem of poor fit. In their analysis of eight distributions (including 
six countries, with two countries analyzed separately in urban and rural areas), Hajargasht et al. 
found significant misfit in three out of eight cases, even for the most flexible GB2 distribution.85 
In three out of five remaining cases, however, beta-2 distribution could be used instead, which is 
obtained from GB2 distribution by setting 𝑎𝑎 = 1. 

Nonparametric Distribution Comparison 
When precise measurements are available for all units in the sample, nonparametric methods can 
be used as an alternative approach to comparing distributions between groups.86 These methods 
work with order statistics, ranks, or cumulative distribution functions without involving 
summary statistics such as means or variances. As a result, nonparametric methods achieve 
greater robustness for distributions that do not conform to the standard assumptions of t-tests or 
ANOVA, but this robustness generally comes at the expense of lower power (see Error Rates of 
Statistical Tests). 

80 Jenkins, S. 2009. “Distributionally-Sensitive Inequality Indices and the GB2 Income Distribution.” Review of 
Income and Wealth 55(2), 392–398. 
81 Dagum, C. 1977. “A New Model for Personal Income Distribution: Specification and Estimation.” Economie 
Appliquée 30, 413–443. 
82 McDonald 1984. 
83 Buse, A. 1982. “The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note.” The American 
Statistician 36(3), 153–157. 
84 Good 2001, 142. 
85 Hajargasht, G., W.E. Griffiths, J. Brice, D.S. Prasada Rao, and D. Chotikapanich. 2012. “Inference for Income 
Distribution Using Grouped Data.” Journal of Business and Economic Statistics 30(4), 563–575. 
86 Conover, W.J. 1999. Practical Nonparametric Statistics, 3rd edition. Hoboken, New Jersey: Wiley. 

26 
 

                                                                                                                                                                                           



Several nonparametric tests exist to compare distributions between two groups. The 
Kolmogorov-Smirnov test compares the distribution functions between two groups, with the test 
statistic defined as 

 𝐷𝐷 = 𝑠𝑠𝑠𝑠𝑠𝑠 |𝐹𝐹1,𝑛𝑛1(𝑥𝑥) − 𝐹𝐹2,𝑛𝑛2(𝑥𝑥)|,   𝐹𝐹𝑘𝑘,𝑛𝑛𝑘𝑘(𝑥𝑥) = 1
𝑛𝑛𝑘𝑘
∑ 1{𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥}𝑛𝑛𝑘𝑘
𝑖𝑖=1  , (22) 

where 𝐹𝐹𝑘𝑘,𝑛𝑛𝑘𝑘(𝑥𝑥) is the cumulative distribution function in group 𝑘𝑘, and the subindices are used to 
highlight the dependence on the sample size. The test rejects the null hypothesis of equality of 

the two distributions when 𝐷𝐷 > 𝑐𝑐(𝛼𝛼)�𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

, and 𝑐𝑐(𝛼𝛼) is a calibration constant based on the size 

of the test, 𝑐𝑐(𝛼𝛼) = 1.36 for 𝛼𝛼 = 0.05. This test is most sensitive to the departures in the middle 
part of the distribution, which can be viewed as an advantage in the current application. It is not 
very sensitive to the outliers at the tails of the distribution and deals with most of the population 
in the middle of it. Although the Kolmogorov-Smirnov test is applicable to the two-group 
comparisons, such as comparing males and females, it does not allow generalizations for 
multiple groups, such as multiple racial categories or the interaction between gender and race. 
The Kolmogorov-Smirnov test assumes independence between the CDFs being compared and 
does not perform well when the distributions being compared are based on parametric functional 
forms with estimated parameters. 

A popular two-sample nonparametric test to compare two populations is the two-sample 
Wilcoxon rank-sum test, which is equivalent to Mann-Whitney two-sample test. The underlying 
population parameter of the Wilcoxon-Mann-Whitney test is the probability that a randomly 
selected observation from group 1 is greater than a randomly selected observation from group 
2.87, 88 Gastwirth argues that this parameter can be a useful supplement to the difference in means 
underlying the t-test and a relevant policy parameter in itself.89, 90 Implementations in R package 
incorrectly identify the alternative hypothesis of the test as that of a nonzero shift. Although the 
test is sensitive to pure shifts, it has the more general interpretation of a test of the differences 
between two or more distributions. To form the Wilcoxon test statistic, the two samples are 
pooled, the observations are sorted to produce ranks, and the test statistic, with reference to the 
first group, is 𝑇𝑇 = ∑ 𝑅𝑅1𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 , where 𝑅𝑅1𝑖𝑖 is the rank of the 𝑖𝑖-th observation from the first sample. It 

has an asymptotic normal distribution with mean 𝑛𝑛1(𝑛𝑛1 + 1)/2 and variance 𝑛𝑛1𝑛𝑛2(𝑛𝑛1 + 𝑛𝑛2 +
1)/12, giving rise to a 𝑧𝑧-statistic. The Mann-Whitney 𝑈𝑈-statistic is the number of times in all 
pairwise comparisons that an observation from the second group is less than an observation from 
the first group: 𝑈𝑈 = ∑ ∑ 1�𝑋𝑋2𝑗𝑗 <  𝑋𝑋1𝑖𝑖�𝑗𝑗𝑖𝑖 . For the two-sample comparisons problem, the two 
statistics only differ by a constant: 𝑈𝑈 = 𝑇𝑇 − 𝑛𝑛1(𝑛𝑛1 + 1)/2. The later analyses in this report 
utilize this asymptotic approximation; for smaller samples, exact 𝑝𝑝-values can be utilized. 
Gibbons and Chakaborti91 note  that “[the asymptotic] approximation has been found reasonably 

87 Gastwirth, J.L. 1975. “Statistical Measures of Earnings Differentials.” The American Statistician 29(1), 32–35 
88 Conroy, R.M. 2012. “What Hypotheses Do ‘Nonparametric’ Two-Group Tests Actually Test?” The Stata Journal 
12(2), 182–190. 
89 Gastwirth 1975. 
90 Gastwirth 1985. 
91 Gibbons, J. D., and S. Chakraborti. 2011. Nonparametric Statistical Inference, 5th edn. Boca Raton, FL: Chapman 
& Hall/CRC. 
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accurate for equal sample sizes as small as 6”. The exact 𝑝𝑝-values are computationally 

demanding as they require a recursive enumeration of at least 𝛼𝛼 �
𝑛𝑛1 + 𝑛𝑛2
𝑛𝑛1

� orderings of the 
observations from the two samples, where 𝛼𝛼 is the target significance level. This number 
becomes very large very quickly, with little accuracy gains on top of the asymptotic expression 
in large samples. 

There also exists a more straightforward non-parametric analogue of the 𝑡𝑡-test: rather than a test 
of two means, the medians of the two groups are explicitly compared. This test, however, is 
known to have a power that is much lower than other applicable tests, especially in small 
samples, which makes it difficult to recommend for the current practical application.92 

Rosenbaum introduced the concept of sensitivity analysis, in which the differences in the 
observed outcomes between two groups are attributed to the different prevalence of an 
unobserved (unmeasured) factor 𝑈𝑈 in these groups.93, 94 Sensitivity analysis then aims to obtain 
the bounds on the ratio 𝛤𝛤 of the prevalences of 𝑈𝑈 in these groups that would fully explain the 
observed differences in the outcomes. Gastwirth explains this approach in context of 
discrimination as follows: Let the success rates of the majority and minority groups be 𝑝𝑝1 and 𝑝𝑝2, 
respectively, and the prevalence of the unmeasured factor 𝑈𝑈 in these groups, 𝑓𝑓1 and 𝑓𝑓2, 
respectively.95 Let the observed relative risk be 𝑅𝑅𝑜𝑜 = 𝑝𝑝2/𝑝𝑝1 (that is, by how much the majority 
success rate exceeds that of the minority). Then, for a given value of the relative risk 𝛤𝛤 = 𝑅𝑅𝑢𝑢 
associated with the factor 𝑈𝑈 (that is, the relative increase in the success rate between otherwise 
identical individuals that differ only in the presence of this factor), the prevalence of 𝑈𝑈 in the 
minority group must be at least 𝑓𝑓2 ≥ 𝑅𝑅0𝑓𝑓1 + 𝑅𝑅0−1

𝑅𝑅𝑢𝑢−1
 for the presence 𝑈𝑈 to explain the observed 

differences in success rates. In the most conservative case, if 𝑅𝑅𝑢𝑢 = +∞ (meaning that the 
presence of 𝑈𝑈 makes a person arbitrarily more attractive for hire) and 𝑓𝑓1 = 1 (that is, everybody 
in the majority population has the trait 𝑈𝑈), then if at least 𝑓𝑓2 × 100% of the minority population 
have 𝑈𝑈, this factor could not reduce the disparity to insignificance. 

For continuous data, such as pay levels, Rosenbaum notes that extensions are possible for 
continuous outcomes when the test statistic has the functional form 𝑇𝑇 = ∑ 𝑍𝑍𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where 𝑍𝑍𝑖𝑖 is 
the “treatment” (minority group) indicator and 𝑞𝑞𝑖𝑖 is a function of the response (for example, 
ranks of the pay levels in Wilcoxon test statistic) and is asymptotically normal, so that a one-
sided hypothesis has a critical region 𝑇𝑇 ≥ 𝑘𝑘 for some 𝑘𝑘.96, 97 This approach is implemented in the 
rbounds package in R.98 

92 Freidlin, B., and J.L. Gastwirth. 2000. “Should the Median Test Be Retired from General Use?” The American 
Statistician 54(3), 161–164. 
93 Rosenbaum, P.R. 1987. “Sensitivity Analysis for Certain Permutation Inferences in Matched Observational 
Studies.” Biometrika 74(1), 13–26. 
94 Rosenbaum, P.R. 2002. Observational Studies, 2nd ed. New York: Springer. 
95 Gastwirth 2000. 
96 Rosenbaum 1987. 
97 Rosenbaum 2002, 140–148. 
98 Keele, L. J. 2014. “rbounds: Perform Rosenbaum Bounds Sensitivity Tests for Matched and Unmatched Data.” R 
package, version 2.1. Available at http://cran.r-project.org/web/packages/rbounds/. 
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A multigroup nonparametric comparison can be conducted using the Kruskal-Wallis test, which 
is a one-way analysis of variance for ranks of observations within the pooled data set. If the null 
hypothesis of the Kruskal-Wallis test is rejected, then at least one group stochastically dominates 
at least one other group. In other words, the CDF of the dominating group lies to the right, or 
below, the CDF of the dominated group. 

Stochastic Dominance 
As discussed later in “Analyses with the Group-Level Data,” much of the research into the 
methodology of grouped income data that has been accumulated in distribution economics deals 
with estimation of the shape of income distribution from reported aggregates at quintile or decile 
levels. On most occasions, income distribution economists are interested in normalized measures 
of inequality concerned with within-group inequality. These measures are often based on the 
Lorenz curve, which is a reparameterization of income distribution.99 The abscissa of the Lorenz 
curve shows the cumulative proportion of the population ordered by income, and the ordinate 
shows the cumulative proportion of income this lower part of the population has: 

 𝐿𝐿(𝑝𝑝) = ∫ 𝑥𝑥 𝑓𝑓(𝑥𝑥)
𝜇𝜇

𝑑𝑑𝑑𝑑 , 𝐿𝐿(0) = 0, 𝐿𝐿(1) = 1𝐹𝐹−1(𝑝𝑝)
0  . (23) 

For example, the point (0.20, 0.03) would mean that the poorest 20 percent of the population 
together receive 3 percent of the total income. Figure 1 shows the Lorenz curve based on CPS 
data. It has a typical convex shape, starting with a certain proportion of zero incomes and sloping 
upwards. The line of perfect equality is the diagonal line, and twice the area between that line 
and Lorenz curve is a popular inequality measure, the Gini index. 

 

99 Lambert 1993. 
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Figure 1. Lorenz curve for total personal income, CPS data, 2013. 
To obtain the distribution function from Lorenz curve, one needs to know the mean income 𝜇𝜇. 
Then the properties of Lorenz curve imply that 

 For 0 < 𝑝𝑝 < 1: 𝐿𝐿′(𝑝𝑝) = 𝑥𝑥
𝜇𝜇

, 𝐿𝐿′′(𝑝𝑝) = 1
𝜇𝜇𝜇𝜇(𝑥𝑥) , 𝑥𝑥(𝑝𝑝, 𝜇𝜇) = 𝜇𝜇𝐿𝐿′(𝑝𝑝),𝑓𝑓(𝑥𝑥(𝑝𝑝), 𝜇𝜇) = 1

𝜇𝜇𝐿𝐿′′(𝑝𝑝) . 100 (24) 

Kakwani and Podder proposed an alternative parameterization: 

 𝜋𝜋 = 1
√2
�𝑝𝑝 + 𝐿𝐿(𝑝𝑝)�,𝜂𝜂 = 1

√2
�𝑝𝑝 − 𝐿𝐿(𝑝𝑝)�  (25) 

so that 𝜋𝜋 measures the length along the line of perfect equality, and 𝜂𝜂 measures the depth of the 
Lorenz curve for a given value of 𝜋𝜋 — that is, the distance to the Lorenz curve along the 
perpendicular to the equality line.101, 102 In this parameterization, 

 𝑥𝑥(𝜂𝜂,𝜋𝜋, 𝜇𝜇) = 𝜇𝜇 1−𝜂𝜂′(𝜋𝜋)
1+𝜂𝜂′(𝜋𝜋) , 𝑓𝑓(𝑥𝑥, 𝜇𝜇) = √2𝜇𝜇

𝜇𝜇+𝑥𝑥
 𝜋𝜋′(𝑥𝑥),𝐹𝐹(𝑥𝑥) = √2(𝜋𝜋 + 𝜂𝜂), 𝐿𝐿 = 𝐹𝐹(𝑥𝑥) = √2(𝜋𝜋 − 𝜂𝜂).(26) 

The primary use of Lorenz curves is visualizing and establishing inequality comparisons. If one 
Lorenz curve lies more outward to (to the right of or lower than) another Lorenz curve, then the 

100 Lambert 1993. 
101 Kakwani, N.C., and N. Podder. 1973. “On the Estimation of Lorenz Curves From Grouped Observations.” 
International Economic Review 14(2), 278–292. 
102 Kakwani, N.C., and N. Podder. 1976. “Efficient Estimation of the Lorenz Curve and Associated Inequality 
Measures From Grouped Observations.” Econometrica 44(1), 137–148. 
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former distribution demonstrates greater inequality, so any proper inequality index will be higher 
for that distribution. Not all distributions can be unanimously compared; in Figure 2, the Lorenz 
curves for males and females cross. A rough interpretation of this phenomenon is that low-
income females earn less compared to the typical female than low income males earn compared 
to the typical male; whereas high-income females earn more compared with the typical female 
than high-income males do compared with typical males. Because these curves are based on 
survey data, they may suffer from both measurement error (top coding or concealing of the 
highest incomes) and sampling error (the shape of the Lorenz curve near the top may be sensitive 
to the highest incomes in the data set). 

 

Figure 2. Lorenz distributions for total personal income, by gender. 
 

Because the Lorenz curve is scale free, the differences in incomes between groups are partial; 
that is, only within-group inequality is being compared. For a more meaningful comparison of 
income distributions that have different income levels, generalized Lorenz curves incorporate the 
level information by scaling the curve to reach the group mean instead of 1: 

 𝐺𝐺𝐺𝐺(𝑝𝑝) = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑𝐹𝐹−1(𝑝𝑝)
0 ,𝐺𝐺𝐺𝐺(0) = 0,𝐺𝐺𝐺𝐺(1) = 𝜇𝜇 103 

 

103 Shorrocks, A.F. 1983. “Ranking Income Distributions.” Economica 50, 1–17. 
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Figure 3 depicts the generalized Lorenz curves based on the CPS data, with the curve for males 
above that for females. 

 

Figure 3. Generalized Lorenz curves for the total personal income, by gender. 

Generalized Lorenz curves have an important relation to the concept of stochastic dominance. 
For two distributions 𝐹𝐹(𝑥𝑥) and 𝐺𝐺(𝑦𝑦), the following three statements are equivalent: 

1. For all 0 < 𝑝𝑝 < 1,𝐹𝐹−1(𝑝𝑝) ≥ 𝐺𝐺−1(𝑝𝑝), that is, the cumulative distribution of 𝐹𝐹(⋅) lies to 
the right of the CDF of 𝐺𝐺(⋅). 

2. For all increasing strictly concave utility functions, ∫ 𝑈𝑈(𝑥𝑥)𝑓𝑓(𝑥𝑥)d𝑥𝑥 ≥ ∫ 𝑈𝑈(𝑦𝑦)𝑔𝑔(𝑦𝑦)d𝑦𝑦, 
where 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑦𝑦) are the pdf functions of the two distributions; that is, the social 
welfare is unanimously higher for distribution 𝐹𝐹(⋅). 

3. For all 0 < 𝑝𝑝 < 1, 𝐺𝐺𝐿𝐿𝐹𝐹(𝑝𝑝) ≥ 𝐺𝐺𝐿𝐿𝐺𝐺(𝑝𝑝), that is, the generalized Lorenz curve for 𝐹𝐹(⋅) lies 
above that of 𝐺𝐺(⋅). 

This means that the generalized Lorenz curves provide a compact visual representation of the 
stochastic dominance of one distribution over another. For the applications in the current project, 
the Lorenz curve can be reconstructed from the grouped data — and the generalized Lorenz 
curve can be obtained by multiplying the Lorenz curve by the group mean income — for an 
EEOC investigator to review whether the demographic groups have stochastic dominance 
relations with one another. 
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Permutation Testing 
Permutation testing represents a simulation-based approach to frequentist statistical hypothesis 
testing.104 In this approach, the distribution of the chosen test statistics is explicitly created by 
simulating from the existing data upon imposing the null hypothesis. For tests of equality 
between groups, this approach boils down to scrapping the existing labels of the categorical 
variables and assigning the labels randomly, as the null hypothesis of no differences implies. 
Alternatively, the values of the outcome can be randomly assigned to the observations within 
groups defined by control variables. The target statistic is computed for permuted data, the 
process is repeated sufficiently many times, and the p-value is computed as the fraction of times 
the value of the test statistic generated by the permutations is further from the null than the 
observed value. The process and the results can be easily visualized with a histogram of the 
simulated values of the test statistic with the observed value overlaid. Permutation tests are exact 
in that they do not rely on any large-sample approximations, although Monte Carlo simulation 
error may present (and is quantifiable). Some of the parametric tests, such as the test for equal 
means of two groups, are asymptotically equivalent to permutation procedures; if that is the case, 
the permutation test is usually as powerful as the most powerful parametric test. 

Permutation tests can be modified to account for covariates known to affect the outcome using 
the approach of conditional permutations, or restricted randomization.105 In this approach, 
permutations of the design variable labels, such as race or gender, can be made within the groups 
defined by the control variables, such as job categories. Justification of the conditional 
permutation requires assumptions similar to those found in the literature on impact evaluation, 
such as conditional independence, or selection on observables; the observed demographic 
category of an individual 𝑖𝑖 and the vector of potential outcomes (levels of pay for that individual 
should that individual belong to a different demographic group) are conditionally independent 
given the control variables (such as job categories). 

Analysis with Grouped Data Within Firm 
Because we recommend collecting pay data by bands within the target groups (see Section I), we 
will also need to analyze the data in bands rather than exact measurements of the level of pay. 
Several options are available: 

1. The data can be analyzed as a contingency table, with the demographic groups as the 
table’s columns and pay bands as rows, ignoring the ordinal relations between the pay 
bands. This approach is the most conservative in that it makes the fewest assumptions 
about the underlying pay data. 

2. Nonparametric rank-based tests can be applied to the grouped data, retaining the 
information regarding the relative ordering of the levels but ignoring the specific cutoff 
values associated with a given band.  

104 Good 2005. 
105 Rosenbaum, P.R. 1984. “Conditional Permutation Tests and the Propensity Score in Observational Studies.” 
Journal of the American Statistical Association 79(387), 565–574. 
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3. A median regression model can be fit instead of the conditional mean model (estimated 
by ordinary least squares). Median regression is a version of quantile regression that 
models a specific quantile of the conditional distribution.106 

4. By making an assumption of an underlying normal or lognormal distribution, an interval 
regression model can be fit to the grouped data.107, 108 Unlike other approaches that 
effectively assume that employees in the same pay band are paid the same amount, 
interval regression explicitly models the distribution within the pay band. 

5. Rosenbaum’s sensitivity analysis continues to be applicable, although subject to the 
caveats regarding performance of Wilcoxon test with grouped data (ties).109 

Compared with the analysis of the original data with accurate pay amounts, the Mann-Whitney-
Wilcoxon test with grouped data is still applicable but will suffer from the presence of ties.110 
Ties are observations with identical values. When the underlying variable is a truly continuous 
one, all ranks are unique. However, when the underlying variable is only an ordinal one, 
identical values (i.e., workers in the same pay band) are likely to be found in the data in one or 
more groups being compared. When ties are present, the exact computation of 𝑝𝑝-values for small 
samples becomes infeasible, and the test has to rely on asymptotic approximation. Implementing 
the test requires that (a) the test statistic accounts for ties properly (such as by incrementing the 
Mann-Whitney 𝑈𝑈-statistic by 0.5 when the observations are tied), and (b) the variance is 
corrected for ties: 𝕍𝕍[𝑈𝑈] = 𝑛𝑛1𝑛𝑛2(𝑛𝑛1+𝑛𝑛2+1)

12
{1 − ∑𝑡𝑡�𝑡𝑡2−1�

(𝑛𝑛1+𝑛𝑛2)[ (𝑛𝑛1+𝑛𝑛2)2−1]} where 𝑡𝑡 is the multiplicity of a 
tie, and the summation is over all sets of ties. Software packages typically either default to these 
modifications when ties are encountered or provide options for analysis with ties. 

Power of the MWW test has been discussed by Noether111: the power of a one-sided MWW test 
is given by  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑍𝑍 > 𝜇𝜇0(𝑇𝑇)−𝜇𝜇1(𝑇𝑇)
𝜌𝜌𝜎𝜎0(𝑇𝑇) + 𝑧𝑧𝛼𝛼

𝜌𝜌
�, (27) 

where 𝜇𝜇0(𝑇𝑇) and 𝜇𝜇1(𝑇𝑇) are the means of the sampling distribution under the null and under the 
alternative, respectively; 𝜎𝜎02(𝑇𝑇) is the variance of the test statistic under the null; 𝜌𝜌 =
𝜎𝜎1(𝑇𝑇)/𝜎𝜎0(𝑇𝑇) is the ratio of the standard deviations of the sampling distributions of the test 
statistics under the null and the alternative, usually assumed to be 1 when the distributions are 
sufficiently close; and 𝑧𝑧𝛼𝛼 is the upper 𝛼𝛼-level significance point. The Mann-Whitney test statistic 
𝑈𝑈 has the mean 𝑛𝑛1𝑛𝑛2𝑝𝑝′, where 𝑝𝑝′ = Prob[𝑌𝑌2𝑖𝑖 > 𝑌𝑌1𝑖𝑖] + 1

2
Prob[𝑌𝑌2𝑖𝑖 = 𝑌𝑌1𝑖𝑖]. Under the null of equal 

106 Koenker, R. 2005. Quantile Regression. Econometric Society Monographs, no. 38. New York: Cambridge 
University Press. 
107 McCullagh, P. 1980. “Regression Models for Ordinal Data.” Journal of the Royal Statistical Society, Series B: 
Methodology 42(2), 109–142. 
108 Stewart, M.B. 1983. “On Least Squares Estimation When the Dependent Variable Is Grouped.” Review of 
Economic Studies 50(4), 737. 
109 Rosenbaum 2002, 140–144. 
110 Gibbons, J. D., and S. Chakraborti. 2011.  
111 Noether, G. E. (1987). Sample Size Determination for Some Common Nonparametric Tests. Journal of the 
American Statistical Association, 82 (398), 645–647. 
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earnings distributions (no discrimination), 𝑝𝑝′ = 1/2. The value of this parameter under 
alternatives depends on both the degree of discrimination, and the groupings used. 

Median regression is a variant of linear regression in which the focus is on the conditional 
quantiles of the distribution 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖, such as, the conditional median 𝐹𝐹𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

−1(1/2), rather than the 
conditional mean 𝔼𝔼[𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖]. Initially proposed as a variant of a regression method robust to 
outliers, quantile regression has become a widely used econometric tool to study distributional 
impacts.112  While applicable with Mincer wage equation (1), quantile regression appears to be a 
promising method for grouped data to model the median income group into which individuals 
with different demographic characteristics fall. Unfortunately, the straightforward application of 
median regression with simulated data produced unsatisfactory results (see “Simulated EEOC 
data”). When the outcome variable in the median regression is the sequential number of the pay 
band, then the coefficient estimates are integer numbers (zero if the median pay of a 
demographic group is the same as that of the reference group, –1 if it the median pay group for a 
demographic group is the next lowest pay band, and so on). A greater complication involves 
standard errors, which are calculated by comparing the conditional sample median with its 
nearby observations within a demographic group. However, if the dependent variable does not 
vary in the neighborhood of the median (all cases with incomes near the median are contained in 
the same pay group and therefore have the same value of the left-hand-side variable), then the 
standard error is zero, making statistical inference impossible. In other words, a violation of the 
assumption that the dependent variable is continuous may render the quantile regression method 
inapplicable. 

The interval regression model incorporates measurement error in measuring the true pay level 
into the regression model (1) by explicitly assuming the normal distribution of the error terms 
𝜖𝜖𝑖𝑖of the model for the log pay. Then the probability of an event that an individual 𝑖𝑖 has income 
between 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 is  

ℙ [ 𝑦𝑦𝑖𝑖 ∈ (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖)] = ℙ[𝑙𝑙𝑙𝑙 𝑎𝑎𝑖𝑖  <  𝛽𝛽0 +  𝛽𝛽1′𝑑𝑑𝑖𝑖 + 𝛽𝛽2′𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖 < 𝑙𝑙𝑙𝑙 𝑏𝑏𝑖𝑖] = 
= ℙ[𝑙𝑙𝑙𝑙 𝑎𝑎𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1′𝑑𝑑𝑖𝑖 − 𝛽𝛽2′𝑥𝑥𝑖𝑖 < 𝜖𝜖𝑖𝑖 < 𝑙𝑙𝑙𝑙 𝑏𝑏𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1′𝑑𝑑𝑖𝑖 − 𝛽𝛽2′𝑥𝑥𝑖𝑖] = 

 =𝛷𝛷 �𝑙𝑙𝑙𝑙𝑏𝑏𝑖𝑖−𝛽𝛽0−𝛽𝛽1
′𝑑𝑑𝑖𝑖−𝛽𝛽2′𝑥𝑥𝑖𝑖

𝜎𝜎
� − 𝛷𝛷 �𝑙𝑙𝑙𝑙𝑎𝑎𝑖𝑖−𝛽𝛽0−𝛽𝛽1

′𝑑𝑑𝑖𝑖−𝛽𝛽2′𝑥𝑥𝑖𝑖
𝜎𝜎

� , (28) 

where Φ(𝑧𝑧) is the distribution function of a standard normal variable. Note that the normality 
assumption pertains to the distribution of log incomes within a demographic group defined by 
regressors 𝑥𝑥𝑖𝑖. Within a pay band, the distribution of the log-pay is truncated normal. Note also 
that because of the log normality assumption, the boundaries of the group are defined in log 
terms. With the individual-level data, the model can be estimated by maximum likelihood 
assuming independence of observations, in which case the overall likelihood is the product of 
such contributions. With the group-level data, these contributions need to be weighted by 
frequency weights — that is, the counts of the number of employees in each cell. The 
interpretation of coefficients and tests based on them is going to be the same as for the linear 
regression case. Note that the interval regression model produces an estimate of variance 𝜎𝜎�, 

112 Bassett, G., and R. Koenker. 1978. “Asymptotic Theory of Least Absolute Error Regression.” Journal of the 
American Statistical Association 73(363), 618–622. 
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which can be used if means but not variances are collected. (For an extensive treatment of this 
interval regression model, see Cameron and Triverdi.113) In the current application, the bounds 
𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are fixed by the design: 𝑎𝑎𝑖𝑖 ∈ {𝑧𝑧0 = 0, 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐾𝐾−1}, 𝑏𝑏𝑖𝑖 ∈ {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐾𝐾−1, 𝑧𝑧𝐾𝐾 = +∞), 
so if 𝑚𝑚𝑖𝑖 is the consecutive number of the pay band of individual 𝑖𝑖, then 𝑎𝑎𝑖𝑖 = 𝑧𝑧𝑚𝑚𝑖𝑖−1, 𝑏𝑏𝑖𝑖 = 𝑧𝑧𝑚𝑚𝑖𝑖 . 

Analysis with Grouped Data Between Firms 
While the above methods of ordinal grouped data are applicable to the analysis of pay disparities 
based on firm microdata, other aggregated analyses may be of interest for the purposes of 
conducting an initial investigation into an establishment. EEOC has extensive experience in 
investigation of hiring practices, where it uses two-way contingency tables with the protected 
group status as one of the margins, and the establishment being investigated vs. an appropriate 
level of industry as the other margin. A significant Pearson 𝜒𝜒2 test is an indication that the 
establishment has a hiring profile distinct from that of the rest of the industry, which may require 
more detailed investigation. 

In a similar way, earning categories can be tabulated across those of the whole industry, to 
compare whether protected groups employed at a given establishment have an earnings profile 
comparable to that of the industry as a whole. While one margin of the comparison will be the 
establishment vs. industry, the other margin may be defined in a number of ways: 

1. An interaction of earning groups and the protected status (i.e., gender). A schematic is 
given below with a simple case of high and low earnings: 

 Males Females 
Low earnings High earnings Low earnings High earnings 

This firm Firm’s % 
males with 
low earnings 

Firm’s % males 
with high 
earnings 

Firm’s % 
females with low 
earnings 

Firm’s % females 
with high 
earnings 

Its 
industry 

Industry % 
males with 
low earnings 

Industry % 
males with high 
earnings 

Industry % 
females with low 
earnings 

Industry % 
females with high 
earnings 

 

The resulting test will detect differences of the joint distribution of the earnings of both 
males and females vs. the distribution of male and female earnings prevailing in the 
industry. The drawback of this approach, , is that it bakes in the existing practices, so if 
an industry suffers from gender discrimination, the test will  be comparing the 
distribution of earnings against the skewed distribution in the given industry. Using 
manufacturing as an example, comparing the earnings distribution of women factory 
workers at a given firm shows whether that firms’ earnings for women is low for 
manufacturing, but tells us nothing about that firm relative to other low-skilled jobs in 
other industries, for example agriculture or janitorial services.  

113 Cameron, A.C., and P.K. Triverdi. 2005. Microeconometrics: Methods and Applications, section 16.2, pp. 530–
535. New York: Cambridge University Press. 
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2. An interaction of earning groups and the protected status (i.e., gender) compared against 
the overall distribution of earnings. A schematic is given below with a simple case of 
high and low earnings: 

 Males Females 
Low earnings High earnings Low earnings High earnings 

This firm Firm’s % males 
with low 
earnings 

Firm’s % males 
with high 
earnings 

Firm’s % 
females with low 
earnings 

Firm’s % females 
with high 
earnings 

Its 
industry 

Industry % with 
low earnings 
(combined  
genders) 

Industry % with 
high earnings 
(combined  
genders) 

Industry % with 
low earnings 
(combined  
genders) 

Industry % with 
high earnings 
(combined  
genders) 

 

The resulting test will detect differences of the joint distribution of the earnings of both males 
and females vs. the distribution earnings prevailing across genders. An equivalent 
representation will be the following one: 

 Low earnings High earnings 
This firm: males Firm’s % males with low 

earnings 
Firm’s % males with high 
earnings 

This firm: females Firm’s % females with low 
earnings 

Firm’s % females with high 
earnings 

Its industry Industry % with low earnings 
(combined  genders) 

Industry % with high earnings 
(combined  genders) 

 

As we do not have access to sufficiently detailed economy-wide data, this proposal will require 
additional evaluation and assessment. Any form of the test will be sensitive when the distribution 
of earnings in a firm differs from that of the industry for reasons that may not have anything to 
do with discrimination. For example, the earnings distribution in a small, privately owned 
chemical manufacturing firm in Mississippi with non-unionized factory work force will likely 
differ from a large, publicly owned, unionized chemical manufacturingfirm in New York. While 
contingency table analysis can be broken down by job groups, this could lead to problems with 
multiple testing and control over type I error (see section “Error Rates of Statistical Tests” 
below). 

Analysis with Grouped Data For the Overall Distribution of Earnings 
Extensive literature exists on estimating income distribution parameters with grouped data, 
which comes from two motivations. As is traditional in labor economics, wage equations with 
grouped data may need to be analyzed if income data are available only in the grouped form.114 
Because of the peculiarities of the instrument design, a lot of attention has been focused on South 
Africa’s Labour Force Surveys, which allow respondents to state either their exact income or an 

114 Stewart 1983. 
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income range.115, 116 Although methodologically nuanced in terms of economic counterfactuals, 
comparable treatments of the U.S. data use methodologically inferior methods such as 
imputation of the middle income in the bracket.117 

Beyond labor economics literature, economic development literature has shown substantial 
interest in recovering income distributions from grouped data, motivated by the need to analyze 
distribution summaries (such as income inequality or poverty indices)118 based on coarsely 
reported data (decile or quintile groups, or proportions of the population within certain income 
brackets). Kakwani and Podder discuss estimation of the Lorenz curve with the grouped data 
modeling the Lorenz curve, using their parameterization (25) and a simple parametric 
approximation: 

 𝜂𝜂 = 𝑎𝑎𝜋𝜋𝛼𝛼�√2 − 𝜋𝜋�
𝛽𝛽

 (29) 

that they derived from a constant elasticity of substitution production function.119, 120 If 𝑓𝑓𝑘𝑘 is the 
proportion of individuals in the 𝑘𝑘-th income group, and 𝑥𝑥𝑘𝑘∗  is the mean income in that group, 
then the grouped Lorenz curve consists of the points { (𝑝𝑝𝑚𝑚, 𝑞𝑞𝑚𝑚): 𝑝𝑝𝑚𝑚 =  ∑ 𝑓𝑓𝑘𝑘𝑚𝑚

𝑘𝑘=1 , 𝑞𝑞𝑚𝑚 =
1/𝜇𝜇 ∑ 𝑥𝑥𝑘𝑘∗𝑓𝑓𝑘𝑘}𝑚𝑚

𝑘𝑘=1 . Defining additional quantities:  

 𝑟𝑟𝑚𝑚 = 𝑝𝑝𝑚𝑚+𝑞𝑞𝑚𝑚
√2

,𝑦𝑦𝑚𝑚 = 𝑝𝑝𝑚𝑚−𝑞𝑞𝑚𝑚
√2

, 

parameters 𝑎𝑎,𝛼𝛼 and 𝛽𝛽 of the approximation (28) can be estimated from (heteroskedastic) 
regression 

 𝑙𝑙𝑙𝑙 𝑦𝑦𝑚𝑚 = 𝑙𝑙𝑙𝑙 𝑎𝑎 + 𝛼𝛼 𝑙𝑙𝑙𝑙 𝑟𝑟𝑚𝑚 + 𝛽𝛽 𝑙𝑙𝑙𝑙�√2 − 𝑟𝑟𝑚𝑚� + 𝑤𝑤1𝑚𝑚 . (30) 

If further group boundaries are known, as in the case of data collection instrument EEOC uses, 
additional equations to estimate the structural parameters are 

 𝜇𝜇−𝑧𝑧𝑚𝑚
𝜇𝜇+𝑧𝑧𝑚𝑚

𝑟𝑟𝑚𝑚�√2−𝑟𝑟𝑚𝑚�
𝑦𝑦𝑚𝑚

 = 𝛼𝛼�√2 − 𝑟𝑟𝑚𝑚� − 𝛽𝛽 𝑟𝑟𝑚𝑚 + 𝑤𝑤2𝑚𝑚 , (31) 

which can be combined with (29) to increase efficiency of the estimates. As this approach relies 
on having both the group frequencies and group means at hand, implementing it in the current 
EEOC application would require collecting not only counts of employees in the income bins but 
also the mean values within these bins, increasing the response burden on establishments.  

115 Posel, D., and D. Casale. 2005. “Who Replies in Brackets and What Are the Implications for Earnings Estimates? 
An Analysis of Earnings Data From South Africa.” Economic Research Southern Africa Working Paper, no. 7, Cape 
Town, South Africa. 
116 Vermaak, C. 2010. “The Impact of Multiple Imputations of Coarsened Data on Estimates on the Working Poor in 
South Africa.” UNU WIDER Working Paper, no. 2010/86, Helsinki, Finland. 
117 Heckman, J.J., L.J. Lochner, and P.E. Todd. 2005. “Earnings Functions, Rates of Return and Treatment Effects: 
The Mincer Equation and Beyond.” IZA Discussion Papers, no. 1700, Bonn, Germany. 
118 Sen, A. 1997. On Economic Inequality (Radcliffe Lectures). New York: Oxford University Press.  
119 Kakwani and Podder 1973. 
120 Kakwani and Podder 1976. 
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Bishop et al. note that estimates of income inequality (and hence, potentially, discrimination in 
the current application) are highly sensitive to the assumptions made regarding the highest 
incomes when the latter are top-coded.121 In their analysis, the Pareto distribution with 
polynomial tails was used to obtain the mean income in the top bracket that does not have the 
right end point, and leads to revised estimates of income inequality expressed as the Gini 
coefficient from 0.38 to 0.44 (which, in terms of income distributions in the late 2000s, is the 
difference between Iceland and Canada; the United States has an even higher level of income 
inequality, with a Gini index of at least 0.48). They noted, however, that using this model, mean 
income was only 92 percent of the true mean income obtained from microdata; as a result their 
model may not be fully adjusting the truncation biases.  

To arrive at an estimate of global income inequality, Chotikapanich et al. make a convenient 
assumption that income is lognormally distributed within a country to create their model of 
global income distribution.122 When only grouped income data are available, they use a linear 
interpolation to estimate the Gini index, through which they obtain the lower bound. 

Schader and Schmid review the various proposed models based on grouped data, both for 
parametric representation of the Lorenz curve itself and for the underlying income distributions, 
when both the proportions and the means within classes are available. They note that “advances 
in this field of research were fairly erratic.” 123 Using 16 years of data on income distribution in 
Western Germany covering a 40-year range, they compared 13 parametric approximations to 
either the underlying income distributions or the Lorenz curve itself. They found that (1) one 
model produced implausible (non-convex) Lorenz curves; (2) most models produced estimates 
of the Gini index that were outside of Gastwirth’s nonparametric bounds,124 and some models 
never produced the values of the Gini index inside these bounds; (3) only three methods 
produced all estimates within the bounds: Kakwani and Podder’s two-parameter approximation 
to Lorenz curve,125 Kakwani’s two-parameter beta approximation,126 and Schader and Schmid’s 
own three-parameter functional form of the curve, which is a generalization of Kakwani’s two 
parameter functional form. 

Hajargasht et al. provided the most general framework of estimating the parameters of the GB2, 
distribution reviewed in “Parametric Distribution Modeling and Comparison,” and five of its 
special cases.127 They analytically derived the asymptotic covariance matrix of the group 

121 Bishop, J. A., Chiou, J.-R., Formby, J. P., Jan. 1994. Truncation bias and the ordinal evaluation of income 
inequality. Journal of Business & Economic Statistics 12 (1), 123–127. URL 
http://dx.doi.org/10.1080/07350015.1994.10509995. 
122 Chotikapanich, D., Valenzuela, R., D. S. Prasada Rao, 1998. Global and regional inequality in the distribution of 
income: Estimation with limited and incomplete data. In: Slottje, D., Raj, B. (Eds.), Income Inequality, Poverty, and 
Economic Welfare. Studies in Empirical Economics. Physica-Verlag HD, pp. 65-78. URL 
http://dx.doi.org/10.1007/978-3-642-51073-1_5  
123 Schader, M., and F. Schmid. 1994. “Fitting Parametric Lorenz Curves to Grouped Income Distributions – A 
Critical Note.” Empirical Economics 19(3), 361–370. 
124 Gastwirth, J.L. 1972. “The Estimation of the Lorenz Curve and Gini Index.” Review of Economics and Statistics 
54, 306–316. 
125 Kakwani and Podder 1976. 
126 Kakwani, N. 1986. Analyzing Redistribution Policies: A Study Using Australian Data. New York: Cambridge 
University Press.  
127 Hajargasht et al. 2012. 
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proportions and means, making it feasible to use the asymptotically efficient generalized method 
of moment estimation and obtain goodness of fit tests. Although this work’s generalization was 
important, it neglected other contributions highlighted in this report, such as Kakwani and 
Podder;128 Gastwirth, Nayak, and Krieger;129 and Schader and Schmid,130 and thus failed to 
reveal whether their fully parametric approach did or did not work better than these alternative 
approaches and nonparametric bounds on inequality coefficients. 

Instead of relying on the best-fitting model, von Hippel, Scarpino, and Holas propose using 
multimodel inference averaging results from different models with weights based on Bayesian 
information criteria.131 They applied the methodology to the data on 3,221 U.S. counties using 
the GB2 family of distributions (GB2 root and nine other special cases). They found that fitting 
the GB2 distribution did not converge 1.0 percent of the time. The estimated parameters implied 
undefined distribution moments such as means and variance 4.4 percent of the time. The fit of 
the GB2 model, measured by the likelihood ratio, was rejected 76.0 percent of the time (the 
authors, however, did not attempt to adjust for multiple testing, as discussed in “Error Rates of 
Statistical Tests”). Their definition of reliability, taken uncritically from mainstream 
measurement theory in social sciences, is based on the correlation between their estimate and the 
true reported value and therefore improperly centers the between-county distribution of the Gini 
indices, sweeping potential biases under the carpet as a result (as observed by Schader and 
Schmid, the members of the GB2 family tend to overestimate the value of the Gini index).132 The 
discrepancies between the model-based and actual values of Gini are due to biases because of 
model misfit rather than a Gaussian mean zero noise, as assumed in the measurement literature 
where the concept of reliability is introduced. A better measure of the performance of their 
estimates would have been the use of Gastwirth bounds on the Gini index, as was done in 
Schader and Schmid.133, 134 

An entirely different approach can be taken to create fully synthetic data sets that are compatible 
with the reported group data.135 The resulting synthetic data sets can be analyzed using any of 
the methods that can be used for the individual-level data. Shorrocks and Wan developed an 
approach to recover the marginal income distribution using the reported summaries by income 
groups.136 Their two-step algorithm first creates a rough approximation to the underlying 
distribution using a reasonably close-fitting parametric distribution, such as a lognormal, 
generalized beta, or Singh-Maddala, and then fine-tuning the income values within each bracket 
to obtain the match with the reported data. Although it is specifically formulated as a large 
sample synthetic data simulation approach (they indicate that the method works best with 

128 Kakwani and Podder 1976. 
129 Gastwirth, J. L., Nayak, T. K., Krieger, A. M., 1986. Large sample theory for the bounds on the Gini and related 
indices of inequality estimated from grouped data. Journal of Business & Economic Statistics 4 (2), 269-273.  
130 Schader and Schmid 1994. 
131 von Hippel, P. T., Scarpino, S. V., Holas, I. 2015. Multimodel estimates of inequality from binned incomes. 
arXiv:1402.4061 [stat.ME], available from http://arxiv.org/abs/1402.4061v5  
132 Schader and Schmid 1994. 
133 Gastwirth 1972. 
134 Schader and Schmid 1994. 
135 Drechsler 2011. 
136 Shorrocks, A.F., and G. Wan. 2008. “Ungrouping Income Distributions: Synthesizing Samples for Inequality and 
Poverty Analysis.” UNU-WIDER Working Paper, no. 2008/16, Helsinki, Finland. 
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𝑛𝑛 ≥ 2000), the Shorrocks-Wan approach can plausibly be utilized to create synthetic data sets 
using the paybands in the separate demographic groups, although it would need to be 
reformulated as a multiple imputation approach. In passing, Shorrockas and Wan noted that 
some of the existing approaches to approximate Lorenz curves (including the production code in 
the World Bank’s POVCAL program) produced implausible negative values when applied to 
some of the actual income distributions.137 

There exists limited literature on the optimal choice of the cutoff points for the groups. Aghevli 
and Mehran approach the problem by minimizing the difference between the Gini coefficients of 
the original continuous and the crude grouped data.138 They propose the following rule: 

 𝑧𝑧𝑘𝑘 = 𝔼𝔼[𝑦𝑦|𝑧𝑧𝑘𝑘−1 ≤ 𝑦𝑦 ≤ 𝑧𝑧𝑘𝑘+1] , (32) 

that is, the cutoff point should be the conditional mean of incomes of the two groups it separates. 
They show that the income grouping using intervals of equal length on income scale is optimal 
for the uniform distribution of income, and income grouping that allocates equal shares of the 
total income to each group is optimal for Pareto distribution with shape parameter 2 (with CDF 
given by 𝐹𝐹(𝑥𝑥) = 1 − (𝑎𝑎/𝑥𝑥)2, 𝑥𝑥 ≥ 𝑎𝑎). They also discuss other potential objective functions for 
income grouping. Davies and Shorrocks refine their work to point out that the condition (31) is 
neither necessary nor sufficient for optimal grouping and may not even be feasible with finite 
population or samples.139 They derive a different condition: 

 𝑚𝑚𝑚𝑚𝑚𝑚{𝑦𝑦:𝑦𝑦 ≤ 𝑧𝑧𝑘𝑘} ≤ 𝔼𝔼[𝑦𝑦|𝑧𝑧𝑘𝑘−1 ≤ 𝑦𝑦 ≤ 𝑧𝑧𝑘𝑘+1] ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑦𝑦:𝑦𝑦 ≥ 𝑧𝑧𝑘𝑘} , (33) 

that is, they provide bounds for 𝑧𝑧𝑘𝑘 rather than exact equality. Davies and Shorrocks provide an 
algorithm to obtain the groupings and prove that it converges in a finite number of steps.140 They 
applied their approach to income distribution in Canada and found that in breaking income into 
20 groups, their optimal grouping broke down the lower 80 percent of the distribution into 
groups composed of about 6.5 percent each, and the upper quintile was broken into finer groups, 
each with about 4 percent of the population, with the top group composed of 1 percent of the top 
earners. This structure illustrates the importance of accurately tracking income distribution at the 
very top, which was also noted by other authors (including Bishop et al.).141  

Survey Design and Its Impact on the Measures of Dispersion, Degrees of 
Freedom, and Statistical Power 

Survey Design Options 
Among the survey design options, the following have been considered: 

1. Modify the current EEO forms, such as by adding pay bands to the EEO-1 form as in the 
EEO-4 form. The resulting ordinal pay data would prevent direct use of regression model 

137 Shorrocks and Wan 2008. 
138 Aghevli, B.B., and F. Mehran. 1981. “Optimal Grouping of Income Distribution Data.” Journal of the American 
Statistical Association 76(373), 22–26. 
139 Davies, J.B., and A.F. Shorrocks. 1989. “Optimal Grouping of Income and Wealth Data.” Journal of 
Econometrics 42, 97–108. 
140 Davies and Shorrocks 1989. 
141 Bishop et. al. 1994 
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(1) with microdata, although modifications of the model accounting for the aggregated 
nature of the data would be feasible.142 (See “Analyses With the Group-Level Data” for a 
detailed description of this option.) 

2. Multiway matching of administrative data, for example, based on existing EEOC forms 
with other employer-side data and employee-side data, including SSA data on Social 
Security wages and salaries and Internal Revenue Service (IRS) data from W-2 forms. As 
is often the case with administrative data, the existing data are collected for purposes 
other than the analysis of pay discrimination. The definitions of wages and salaries for 
SSA or IRS purposes may not match the definitions that are appropriate for the analysis 
of pay discrimination. In particular, because SSA and IRS collect only the annual totals, 
pay rates may not be determined from these data unless additional data on hours worked 
are collected for each employee. 

3. One of the possibilities that was discussed involved collecting the range of pay along 
with the average pay and using techniques such as those proposed by Hozo et al.143 We 
cannot consider their approach as viable because it produces biased estimates for the 
typical right-skewed populations encountered in the analysis of pay data and therefore 
inappropriate for important policy applications. 

Other components of the design that may have implications for the analysis relate to industry and 
geographic classification. The primary industry classification system used in the United States is 
the North American Industry Classification System (NAICS), which uses a six-digit hierarchical 
coding system to classify all economic activity into 20 industry sectors. Five sectors are mainly 
goods-producing sectors and 15 are entirely services-producing sectors.144 NAICS allows for the 
identification of 1,170 industries. Beyond the top two-digit level identifying the 20 primary 
sectors, there are 99 sectors defined by 3 digits, 312 sectors defined by 4 digits, 716 sectors 
defined by 5 digits, and 1065 sectors defined by 6 digits. The levels of geography likewise have 
a multilevel hierarchical structure. The U.S. Census Bureau divides the nation into 4 regions, 9 
divisions, 50 states, and 3,141 counties or statistically equivalent entities within states. The U.S. 
Census Bureau also defines ZIP code tabulation areas (ZCTAs) that are closely related to the 
U.S. Postal Service’s five-digit ZIP code service areas; ZCTAs may cross county and even state 
lines. Independently of states, the U.S. Census Bureau also defines urban areas, 250 metropolitan 
areas (a city or an urban area of at least 50,000 inhabitants with a total population of at least 
75,000 in New England or 100,000 everywhere else), micro areas (areas with an urban core of at 
least 10,000 but less than 50,000), and other types of geographies. Bureau of Labor Statistics 
defines 4,742 labor market areas based on metropolitan, micropolitan and small labor market 
areas, and commuting patterns. The appropriate location definitions should be chosen to ensure 
that establishments that are compared in the same location correspond to the same labor market.  

Because Section I of this report proposes the use of W-2 data arranged in pay bands, 
investigators must consider whether individuals within a demographic group and a pay band are 
really comparable. In particular, individuals with different pay rates may end up in the same bin 

142 Long 1997. 
143 Hozo et al. 2005. 
144 Office of Management and Budget. 2012. North American Industry Classification System: 2012 NAICS 
Definitions. Available at http://www.census.gov/eos/www/naics/2012NAICS/2012_Definition_File.pdf. 
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if they worked a different number of hours, such as when a more highly paid individual joined or 
left the company in midyear. To account for these circumstances, the new EEOC form will 
record the total hours worked. The log of total hours can be used in Mincer wage equation (1) 
with a fixed coefficient of 1 (often referred to as offset in biometric literature, where such offsets 
are used in Poisson regression for counts of adverse events to correct for the different exposures 
to the risk factors by different individuals). If an individual performed work at rates that are 
higher than the regular rates (such as for overtime work), these hours may have to be accounted 
at these higher rates to ensure comparability of pay rates. 

Measures of Dispersion 
In most tests discussed above, measures of dispersion play a crucial role in obtaining the test 
statistics. The sample variances figure explicitly in t-tests (4) and (7), and the estimate of the 
residual variance 𝜎𝜎2 appears in the denominator of the F-test associated with Mincer wage 
equation (1). The available measures of dispersion will depend on the survey design. With 
detailed individual-level pay data, such as that obtained from the matched IRS Form W-2 data, 
any relevant measure can be computed. With the aggregated group-level data, the measures of 
dispersion will have to be either collected explicitly (for example, by augmenting the EEO-1 
form to include the mean and the standard deviation of pay levels in addition to the number of 
employees in a given job category by race/ethnicity and gender cells) or estimated from other 
data (such as pay band data; see “Analyses With the Group-Level Data” on the use of interval 
regression for this statistical task). 

Degrees of Freedom 
The number of degrees of freedom is the number of values in the calculation of statistics that are 
allowed to vary freely; that is, the number of ways in which the final result can be modified by 
changing the inputs. In many statistical problems, the number of degrees of freedom is given by 
the number of observations in the sample 𝑛𝑛, and this number is reduced for each parameter that 
is estimated. For linear problems, such as estimation of a group mean or a regression coefficient, 
one degree of freedom is taken out for each estimated parameter. 

Many distributions used as the reference distributions for statistical tests are characterized by 
degrees of freedom as one of their parameters. For instance, the chi-square distribution with 𝑘𝑘 
degrees of freedom is the distribution of the sum of squares of 𝑘𝑘 independent standard normal 
variates. Related to the chi-square are Student’s t-distribution, which is the ratio of a standard 
normal variate to a chi-square with 𝑘𝑘 degrees of freedom independent from it, and Fisher’s F-
distribution, commonly arising in linear models, which is the ratio of two independent chi-
squares or, in the context of linear models, including ANOVA, the variance of the outcome 
explained by the model to the residual variance.145 These distributions typically are used to 
produce critical values for frequentist tests or to form confidence intervals around parameter 
estimates. As lower degrees of freedom are usually associated with smaller sample sizes, t and 𝐹𝐹 
distributions with low degrees of freedom demonstrate heavy-tailed behaviors, allowing for 
greater uncertainties associated with smaller sample sizes. 

A common rule of thumb is that the number of degrees of freedom is equal to the number of 
observations minus the number of estimated parameters. This rule, however, does not work in 

145 Rao 2001. 
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many practical situations when a particular observation, a group of observations, or a component 
of statistical model has a disproportionate effect on the final statistic — in other words, when 
observations are not independent and identically distributed. 

One such situation, the Satterthwaite correction for degrees of freedom of the t-test, was 
considered in “Comparisons of Specific Aspects of the Pay Distribution” above. When two 
groups have the same variances and sample sizes, the Satterthwaite formula produces the 
maximum number of degrees of freedom, which also corresponds to the degrees of freedom for 
the linear models quoted above (the total sample size minus the number of estimated parameters, 
which are the means in the two samples): d.f. = 𝑛𝑛1 + 𝑛𝑛2 − 2, the total sample size minus two 
estimated parameters. However, when the variances are unequal or the sizes of the groups differ, 
the degrees of freedom are reduced (that is, the tails of the t-test are becoming fatter), and in 
extreme cases, the number of degrees of freedom of the test  is determined by the sample size of 
the group with the higher variance/lower sample size. In other words, the naturally greater 
variability of the sample mean in that group leads to a more dominant contribution to the test 
statistic, and ultimately, the number of degrees of freedom is the result of that source of greater 
variability. These effects are illustrated in Figure 4. When the sample sizes are balanced (𝑛𝑛1 =
𝑛𝑛2 = 20), the resulting number of degrees of freedom of the t-test is 𝑛𝑛1 + 𝑛𝑛2 − 2 only when 
variances are balanced. For heteroskedastic groups, the number of degrees of freedom is reduced, 
approaching the extreme value of 19 when one of the groups has much larger or much smaller 
variance. When the sample sizes are unbalanced (for example, 𝑛𝑛1 = 10 while 𝑛𝑛2 = 20 on this 
graph), Satterthwaite degrees of freedom are driven by the sample size of the group with the 
larger variance. For the curve with 𝑠𝑠1 = 1, the second group has higher variance (𝑠𝑠2 = 2), and 
Satterthwaite degrees of freedom exceed 𝑛𝑛2 = 20. For the curve with 𝑠𝑠1 = 4, the first group has 
higher variance, and Satterthwaite degrees of freedom barely exceed 𝑛𝑛1 = 10. 
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Figure 4. Satterthwaite degrees of freedom for Welch t-test. 
( function ((s11^2/x) + (s2^2/n2))^2 / ( s11^4/(x*x*(x-1)) + s2^4/(n2*n2*(n2-1) 1 "s{subscript:1}=1" ) label( 2 "s{subscript:1}=2" ) label(3 "s{subscript:1}=4") label( 4 "d.f. =  

Another situation of reduced degrees of freedom arises in complex survey sampling designs. 
When the sample is taken in a multistage design, producing a clustered sample, the degrees of 
freedom are commonly computed as the number of primary sampling units (because in cases in 
which all observations within a primary sampling unit are identical, it contributes only one 
degree of freedom along which the results can vary) minus the number of strata (because strata 
means are estimated when computing sampling variances). In this case, a group of observations, 
a primary sampling unit, contributes less to the ultimate degrees of freedom than the full number 
of observations in that group. When the sample has unequal weights because of differing 
sampling and response probabilities, observations with greater weights have greater effect on the 
final statistics than observations with smaller weights, and the final result varies less in response 
to these lower-weight observations. Unequal weighting therefore has effect on both the sample 
size, resulting in an effective sample size that is typically smaller than the nominal sample size 

 𝑛𝑛� = �∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 �2

∑ 𝑤𝑤𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
, (34) 

as well as on the degrees of freedom for variance estimation.146 Potthoff et al. propose alternative 
expressions for the degrees of freedom of unequally weighted complex survey data that depend 
on the third and the fourth moments of weights: 

146 Korn, E. K., and B. I. Graubard. 1999. Analysis of Health Surveys. New York: Wiley & Sons, pp. 172–176.  
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Valliant and Rust consider a stratified sample with unequal strata variances 𝜎𝜎ℎ2 and sample sizes 
𝑛𝑛ℎ in stratum ℎ = 1, … , 𝐿𝐿, and arrive at an expression for degrees of freedom that involves 
higher order moments of data: 
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The cumulative effect of all features of complex survey designs is accommodated in the degrees 
of freedom of statistical tests and information criteria via the generalized design effects.149, 150  

Finally, in flexible models such as those arising in machine learning, more than one degree of 
freedom may need to be removed — for example, in regression trees, one node corresponds to 
about three degrees of freedom.151 

The issue of degrees of freedom can become even more complicated when analyzing aggregated 
data, such as in pay bands by target group. While the number of people in a given cell can be 
used in computing the Satterthwaite degrees of freedom (5) for a two-sample t-test, the use of the 
cell values in other analyses, such as regression models, may produce as little as one degree of 
freedom per cell, so that the overall sample size is the number of cells rather than the number of 
individuals in these cells. 

Error Rates of Statistical Tests 
Statistical testing procedures are usually characterized by two error rates: 

1. Type I error rate (denoted as 𝛼𝛼), or significance level, characterizes the probability of a 
false alarm when the test concludes that there is evidence against the null hypothesis even 
though the null hypothesis is actually true. When the null is that of no discrimination, 
such as posited in hypotheses (2) or (3), a type I error occurs when a flag is raised against 
a company that does not discriminate against its employees, with the test producing a 
significant result simply by chance. Significance level is then the proportion of 
investigations that will end up not finding any evidence of discrimination. This parameter 
therefore characterizes the operational efficiency of the EEOC statistical procedures. 

147 Potthoff, R. F., M.A. Woodbury, and K.G. Manton. 1992. “‘Equivalent Sample Size’ and ‘Equivalent Degrees of 
Freedom’ Refinements for Inference Using Survey Weights Under Superpopulation Models.” Journal of the 
American Statistical Association 87(418), 383–396. 
148 Valliant, R., and K.F. Rust. 2010. “Degrees of Freedom Approximations and Rules-of-Thumb.” Journal of 
Official Statistics 26(4), 585–602. 
149 Rao, J.N.K., and D.R. Thomas. 2003. “Analysis of Categorical Response Data From Complex Surveys: An 
Appraisal and Update.” In: Chambers, R.L., and C.J. Skinner Analysis of Survey Data. New York: Wiley, 85–108. 
150 Lumley, T., and A. Scott. 2015. “AIC and BIC for Modeling With Complex Survey Data.” Journal of Survey 
Statistics and Methodology, in press. 
151 Ye, J. 1998. “On Measuring and Correcting the Effects of Data Mining and Model Selection.” Journal of the 
American Statistical Association 93(441), 120–131. 
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2.  Type II error rate (denoted as 𝛽𝛽, not to be confused with the symbol used to denote 
regression coefficients) is an error of omission rate, in which the test concludes that there 
is not enough evidence against the null hypothesis even though the alternative hypothesis 
is true. When the null is that of no discrimination, a type II error is that of missing an 
establishment because its discriminatory practices do not manifest strongly enough. This 
parameter thus characterizes equitability of the EEOC statistical procedures. 

The complement of the type II error rate, 1 − 𝛽𝛽, is referred to as power of the test. The type I 
error rate is also called the significance level, or the size of the test. The most common values 
used in statistical practice are values of 1%, 5%, and 10% for 𝛼𝛼, and 80% for power. 

Some tests, such as the t-test or the Wilcoxon-Mann-Whitney test, can be made directional, or 
one-sided. That is, the statistical test can be formulated to be sensitive to differences only when 
the mean pay of the protected group is lower than the mean pay of the majority group. 
Considerations for the use of one-sided tests in establishing discrimination usually involve the 
known history of discrimination that manifests in lower pay. A two-sided statistical test, on the 
other hand, is the one that is sensitive to either positive or negative differences between the two 
groups. Both the t-test and Wilcoxon-Mann-Whitney test can be formulated as either one-sided 
or two-sided tests. Other tests, such as Kolmogorov-Smirnov test or tests that rely on squared 
quantities (and have 𝜒𝜒2 or 𝐹𝐹-distributions, such as those arising in analysis of contingency tables 
or in regression models with multiple coefficients being tested simultaneously), are inherently 
two-sided. The one-sided tests have greater power when the alternative is in the hypothesized 
direction but have no power when the alternative is in the opposite direction (that is, when the 
protected group earns more than the reference group). Good notes that the use of one-tail vs. 
two-tail tests often causes confusion and argues in favor of one-sided tests when the direction of 
the socially undesirable outcome that the court needs to guard against is clear.152 He cites the 
toxicity of a chemical compound as an example, in which basic biology implies that an increase 
in a dose leads to higher cancer rates, thus justifying the use of one-sided test. 

When different tests for the same null hypotheses are available, one can compare the tests that 
have the same size (the probability of a false alarm or type I error). For example, Durbin derives 
the power of Kolmogorov-Smirnov test and, in one of the applications of the theoretical result, 
compares its power with that of the power of the “optimal” test for an exponential distribution 
based on the sample mean.153 He found that the asymptotic power of Kolmogorov-Smirnov test 
was lower (about 81% asymptotic power against a sequence of local alternatives where the 
optimal test is calibrated to have 95% power), and the small sample power of Kolmogorov-
Smirnov test was worse still. However, the primary strength of a nonparametric test such as the 
Kolmogorov-Smirnov test is that it does not depend on whether the researcher has correctly 
identified the parametric distribution, such as the normal distribution, as required by parametric 
tests that assume a specific distribution. 

152 Good 2001, pp. 150–152. 
153 Durbin, J. 1971. “Boundary-Crossing Probabilities for the Brownian Motion and Poisson Processes and 
Techniques for Computing the Power of the Kolmogorov-Smirnov Test.” Journal of Applied Probability 8(3), 431–
453. 
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In most statistical applications, the issue of power arises at the planning stages of a study when 
determining the sample size to be collected.154 In the current application, because the EEOC data 
are collected for all full-time employees of all eligible establishments, the sample size is fixed in 
advance and is equal to the number of establishments in the industry or industry-location cells 
for analysis of the industry as a whole, and to the number of eligible employees of the 
establishment for the analysis and investigation of an establishment. In addition, EEOC’s routine 
practices lead to the issue of multiple testing (that is, the same hypothesis is applied to a number 
of establishments), which can create problems with controlling the overall size of the test.155  

As a simple example, consider conducting 𝐾𝐾 = 100 independent tests at the 5% significance 
level. When the null hypothesis is true, about 5 tests would come out significant at 5% level 
(strictly speaking, the number of significant tests will follow a binomial distribution with n=100 
and p=0.05 that has a mean of 5). If the alternative is that in at least one of the 100 tests, the null 
hypothesis is wrong, and the rejection rule is to reject when at least one test is significant at level 
𝛼𝛼0, then the overall probability of rejection is 𝛼𝛼 = 1 − (1 − 𝛼𝛼0)𝐾𝐾. If this is to be set to 5%, then 
the individual rejection level is to be set to 𝛼𝛼0 = 1 − √1 − 𝛼𝛼𝐾𝐾 = 1 − 0.051/100 = 0.000513, 
much lower than the original value of 5%. A similar value is given by a conservative bound 
known as the Bonferroni correction, 𝛼𝛼𝐵𝐵 = 𝛼𝛼/𝐾𝐾 = 0.0005. More accurate testing procedures 
aimed at controlling false discovery rates have been used during the past 20 years in areas such 
as genomics, where the statistical tasks are often formulated for microarrays that may register 
tens of thousands genes, leading to the corresponding number of hypothesis being tested (e.g., 
whether a given gene affects a disease).156 The Benjamini-Hochberg-Yekutieli false discovery 
rate procedure identifies the hypotheses that should be rejected as follows: 

1. Sort the 𝑝𝑝-values of individual hypotheses in an ascending order: 𝑃𝑃(1),≤ 𝑃𝑃(2) ≤ ⋯ ≤
𝑃𝑃(𝐾𝐾). 

2. For a given 𝛼𝛼, find the largest 𝑘𝑘 such that 𝑃𝑃(𝑘𝑘) ≤
𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚(𝑚𝑚) , 𝑐𝑐(𝑚𝑚) = ∑ 𝑛𝑛−1𝑚𝑚
𝑛𝑛=1 ≈ ln𝑚𝑚 +

𝛾𝛾 = ln𝑛𝑛 + 0.5772. 
3. Reject all the null hypotheses 𝐻𝐻(1),𝐻𝐻(2), … ,𝐻𝐻(𝑚𝑚) corresponding to the 𝑝𝑝-values 

𝑃𝑃(1),𝑃𝑃(2), … ,𝑃𝑃(𝑚𝑚). 

This procedure provides justification for the descriptive ranking approach outlined earlier, where 
we suggested listing the companies that seem to deviate most from the null hypothesis (or the 
values typical for the industry), and provides the cutoff for the establishments that need to be 
investigated. 

Good calls for the government regulations to “be drafted so as to specify either the sample size 
and cut-off criteria or acceptable values of Type I and Type II errors.”157 In the context of the 
current application, one can argue that the EEOC may want to consider setting the parameters of 

154 Ryan, T.P. 2013. Sample Size Determination and Power. Hoboken, New Jersey: Wiley. 
155 Dmitrienko, A., A.C. Tamhane, and F. Bretz (eds.). 2009. Multiple Testing Problems in Pharmaceutical 
Statistics. Chapman & Hall/CRC Biostatistics Series. Boca Raton, Florida: Chapman and Hall/CRC. 
156 Benjamini, Y., and Y. Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing.” Journal of the Royal Statistical Society, Series B (Methodological) 57(1), 289–300. 
157 Good 2001, 129. 
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statistical tests to optimize their performance.158 Within the framework of statistical decision 
theory, one needs to define the loss function associated with the costs of different errors.  

The cost of type I errors to society includes (1) the cost of EEOC to investigate the case, plus, 
potentially, (2) the cost for the establishment to respond to the discrimination claim, plus, 
potentially, (3) the cost to cover court fees if the charges are brought to court but no evidence of 
discrimination is found (recall that type I errors occur under the null hypothesis of no 
discrimination).  

The cost of type II errors includes (1) the lost income of the employees who have been 
discriminated against, as well as (2) the reputation costs of discrimination to society at large. If 
these costs can be quantified, EEOC can optimize the decision rules by choosing the significance 
level, or action threshold, over which an investigation is to be triggered. If this threshold is set 
too low (on a scale where large values are associated with stronger evidence of discrimination), 
too many establishments will be investigated, including many that do not discriminate, wasting 
EEOC resources. If this threshold is set too high, then some companies that engage in 
discrimination may fall below the radar and avoid being investigated. 

Without quantifying these costs, it is difficult to provide further advice regarding the error rates 
that EEOC should be targeting in its investigations. The frequently used figures of 5% or 1% 
significance (false alarm rates; establishments investigated where no discrimination exists) and 
80% power (probability of finding discrimination in an organization that truly discriminates) are 
guided by considerations entirely different than those EEOC is facing. In particular, if EEOC 
adopts the framework of optimizing the error rates based on the costs of incorrect decisions, a 
sliding scale will be created in which the optimal rates depend on the establishment size: while 
the cost of investigation varies  slowly over establishments of different sizes, the societal costs 
are increasing proportionally to the establishment size, assuming that a constant fraction of the 
employees are experiencing discriminated. Thus with higher societal costs in larger 
establishments, the action threshold should be lowered for larger establishments.  

Suppose an EEOC investigator is investigating a company with 80 employees, of whom 50% are 
women, and average earnings are $20,000. If the female employees are discriminated so that 
their pay rate is 10% lower than that of males, the annual societal cost of discrimination is 𝐶𝐶𝑆𝑆 =  
80 employees × 50% female × $20,000 average × 10% disparity = $80,000. Suppose the cost (to 
the EEOC) of investigation is 20 hours of investigator’s time = $2,000=𝐶𝐶𝐼𝐼. Using the traditional 
statistical notation for the Type I error rate as 𝛼𝛼 and type II error as 𝛽𝛽, the total expected cost is 
the sum of the cost for each outcome times its probability: 𝐶𝐶𝐸𝐸 = 𝛼𝛼𝐶𝐶𝐼𝐼 + 𝛽𝛽𝐶𝐶𝑆𝑆. If the (asymptotic) 
distributions of the test statistic 𝑇𝑇 under both the null and the alternative are normal159 𝑁𝑁(𝜇𝜇0,𝜎𝜎2) 
and 𝑁𝑁(𝜇𝜇1,𝜎𝜎2), respectively, then the one-sided critical value for a rejection region 𝑇𝑇 > 𝑇𝑇0 is 
given by 𝑇𝑇𝑐𝑐 =  𝜇𝜇0 + 𝜎𝜎𝑧𝑧𝛼𝛼, and the probability of type II error of inclusion is Prob[𝑇𝑇 < 𝑇𝑇𝑐𝑐] =
 Φ(𝜇𝜇0−𝜇𝜇1

𝜎𝜎
+ 𝑧𝑧𝛼𝛼), where the 𝛼𝛼-level upper percentile is 𝑧𝑧𝛼𝛼 = Φ−1(1 − 𝛼𝛼), and Φ(𝑧𝑧) is the 

standard normal cdf. Thus the final expression for the expected cost is 

158 DeGroot, M. H. 2004. Optimal Statistical Decisions. New York: Wiley-Interscience. 
159 Noether 1987. 
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 𝐶𝐶𝐸𝐸(𝛼𝛼) = 𝛼𝛼𝐶𝐶𝐼𝐼 + 𝛷𝛷 �𝜇𝜇0−𝜇𝜇1
𝜎𝜎

+ 𝛷𝛷−1(1− 𝛼𝛼)� 𝐶𝐶𝑆𝑆 (37) 

Differentiating with respect to α and setting the derivative to zero, we can find the optimal 
enforcement level α as the solution to: 

 0 = 𝑑𝑑 𝐶𝐶𝐸𝐸
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The asymptotic distribution of Mann-Whitney-Wilcoxon test is 𝑁𝑁(𝑛𝑛1𝑛𝑛2𝑝𝑝′,𝑛𝑛1𝑛𝑛2(𝑛𝑛1 + 𝑛𝑛2 +
1)/12) where 𝑝𝑝′ is the probability that an observation from one group (male earnings) is greater 
than an observation from the other group (female earnings); 𝑝𝑝′ = 0.5 under the null of no 
discrimination.  Using the “middle income” scenario results from section “Power analysis with 
grouped data” below, we find that 𝑝𝑝′ = 0.609 for MWW test under the alternative using the 
optimal grouping of incomes proposed in that section. For the selected company size, 𝑛𝑛1 = 𝑛𝑛2 =
40. Thus we need to solve for 𝑧𝑧𝛼𝛼 from equation 

 0.025 = $2,000
$80,000� = 𝜑𝜑(1.678 + 𝑧𝑧𝛼𝛼)

𝜑𝜑(𝑧𝑧𝛼𝛼)�  

 

Figure 5. Numeric solution for the optimization of error rates. 
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Solution to this equation (see Figure 5) is given by 𝑧𝑧𝛼𝛼 = 1.36, which corresponds to the optimal 
type I error rate (significance) level of 𝛼𝛼 = 8.7%. This is a somewhat more lax criterion than the 
traditionally used 5% level. For the given company size and gender ratio of the employee pool, 
the increase in the ratio of the EEOC investigation cost to the societal cost of discrimination is 
going to lead to an increase in the optimal error rate. An increase in the company size will likely 
lead to a proportional increase of the societal cost, a disproportionately smaller increase in the 
investigation costs, and an increase of the noncentrality parameter (𝜇𝜇0 − 𝜇𝜇1)/𝜎𝜎. A more unequal 
gender ratio will decrease the noncentrality parameter, reducing the power of the test, increasing 
the type I error rate, and eventually shifting the curve down. 

Sparse Cells and Unbalanced Groups 

Sample Sizes 
For most establishments, counts of the number of employees in some, if not most, demographic 
cells will likely be anywhere from single digits to the low double digits, especially for minorities 
who are of primary interest. The resulting summaries of pay, such as means, medians, or 
standard deviations, are inevitably going to be imprecise, which may prevent EEOC from acting 
on these small companies. Good160 summarizes several dozen court cases focusing on how 
various courts perceived the sample size issues. In most reported cases, sample sizes below 10 
usually were found inadequate to serve as evidence. He finds that the courts use sensitivity 
analysis (the leave-out-one-or-two rule: the results should not be sensitive to removing or 
reclassifying one or two persons) and statistical significance as criteria for their decisions. 
Gastwirth notes that although courts may leave specific significance levels unspecified, a 
difference of two or three standard deviations, in cases concerning the observed versus expected 
counts, is likely to provide the data support for a prima facie case of discrimination.161 Two 
standard deviations correspond to a two-sided significance level of 0.05 and a one-sided 
significance level of 0.025; three standard deviations correspond to a two-sided significance 
level of 0.0026 and a one-sided significance level of 0.0013. 

The above issues of precision can be viewed as the issue of balancing the error rates as discussed 
in “Error Rates of Statistical Tests” above.  For a fixed level of significance, analysis for smaller 
establishments will be more likely to miss true discrimination; if the power of tests is fixed, the 
significance level has to be higher for small establishments — that is, the procedure will generate 
more false positives. Besides the issue of higher error rates inevitable in smaller samples, there is 
also the issue of approximations of the test statistics when tests rely on asymptotic arguments. 
For all of the nonparametric tests we have considered (Wilcoxon-Mann-Whitney, Kruskal-
Wallis, Kolmogorov-Smirnov), exact distributions in finite samples are available. Distributions 
of the two-sample t-tests are based on a normality assumption, and both the Satterthwaite 
approximate degrees of freedom and Cressie-Whitford corrections for skewness are 
approximations for the true distributions based on matching several lower order distribution 
moments. Besides the sample sizes, these distributions have the ancillary parameters of the 
underlying population variances and, for any sample size, depend on the ratio of these variances, 
with greater ratios producing worse approximations. Finally, regression-type procedures such as 
the quantile regression and the interval regression are based on solving estimating equations and 

160 Good 2001, pp. 115–129. 
161 Gastwirth 2000. 
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have only an asymptotic justification. The degree to which the estimates agree with the 
asymptotic normal distribution is a complicated function of the sample size and nonlinearity in 
these estimating equations. Higher-order asymptotic arguments or simulations can provide better 
insight into the accuracy of inferential decisions based on the use of asymptotic distributions in 
these models. 

Degrees of Freedom in Unbalanced Groups 
As a more subtle effect, the lower degrees of freedom for smaller samples also lead to wider 
confidence intervals because of the heavier tails of the t-, 𝜒𝜒2 or 𝐹𝐹-distributions. As demonstrated 
by the t-test degrees of freedom expression (5) and the discussion that followed there and in 
“Degrees of Freedom” above, unbalanced groups with small sample sizes pose statistical 
challenges, resulting in reduced degrees of freedom and, as a result, wider confidence intervals 
and lower power of statistical tests. Statistical properties of the estimates and tests are often 
determined by the sample size of the smallest group(s), and for some racial and ethnic minority 
groups, the counts in small establishments may be in the single digits, and some cells will be 
empty. 

Improving Estimates’ Accuracy by Borrowing Strength Across Industries and Locations 
One potential way to improve the statistical quality of the estimates is by “borrowing strength” 
from other, similar units, such as establishments in the same industry or location. In statistics, the 
approach is best known as small area estimation.162 Small area estimation is an area of active 
growth and research in survey statistics that emerged in the 1990s following the greater 
availability of computing power. It concerns the problem of obtaining reasonable estimates for 
domains where small sample sizes do not allow direct estimation using only survey data 
(including domains with zero sample observations), such as at the level of a county or a 
metropolitan area. Because typical national surveys contain at most several dozen observations at 
these levels, models have been developed to support inference by borrowing strength from the 
whole data set. A number of large federal statistics programs rely on small area estimates. For 
example, in 1989 the U.S. Census Bureau launched Small Area Income and Poverty Estimates 
(SAIPE) for school districts, counties, and states, which have been updated annually  since 
1995.163 SAIPE data are being used for Title I allocations. The National Cancer Institute runs 
Small Area Estimates for Cancer Risk Factors and Screening Behaviors to produce estimates of 
smoking and mammography at the health service-area level.164 The National Center for Health 
Statistics produces small area estimates for a range of health outcomes.165 Small area estimation 
approaches are used not only in surveys of individuals but also in establishment surveys.166 

162 Rao, J.N.K. 2003. Small Area Estimation. New York: Wiley. 
163 National Research Council. 2000. Small-Area Income and Poverty Estimates: Priorities for 2000 and Beyond. 
Washington, DC: The National Academies Press. 
164Raghunathan, T. E., D. Xie, N. Schenker, V. L. Parsons, W. W. Davis, K. W. Dodd, and E. J. Feuer. 2007. 
Combining information from two surveys to estimate County-Level prevalence rates of cancer risk factors and 
screening. Journal of the American Statistical Association 102 (478), 474-486.  
165 Blumberg, S.J., N. Ganesh, J.V. Luke, and G. Gonzales. 2013. “Wireless Substitution: State-Level Estimates 
From the National Health Interview Survey, 2012.” National Health Statistics Report 70, National Center for Health 
Statistics. 
166 Hidiroglou, M.A., and P. Smith. 2005. “Developing Small Area Estimates for Business Surveys at the ONS.”  
Statistics in Transition 7(3), 527–539. 
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The modern approach to small area estimation involves the use of statistical models to predict 
the variable of interest (such as the proportion of population with a rare characteristic, or 
measures of central tendency of a continuous variable such as income), typically proceeding in 
the following steps: 

1. An appropriate regression model (linear for continuous response, logistic for binary 
response, Poisson for counts, etc.) is first formulated for the response of interest. It would 
use variables available for all sampled areas and all sampled units. 

2. This model is fitted to the existing survey data, with sampling weights if available and 
necessary. 

3. Predictions from the model (called synthetic estimators) are obtained.  
4. If the area-level data are available from the survey data, direct survey estimators 

(weighted means, rates, proportions) are calculated, along with their estimated variances. 
5. The synthetic estimators are combined with the direct estimators to minimize the mean 

squared error of the resulting composite estimator. 
 

The statistical models underlying small area estimates are typically variations of models called 
mixed models in biostatistics167 as well as hierarchical or multilevel models in social 
sciences.168, 169 In a typical two-level model, the regression equation includes not only a random 
term for the “individual” but also random terms for the “areas,” or the units in which the 
individuals are nested (such as establishments): 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 , (38) 

where index 𝑖𝑖 enumerates “areas” and index 𝑗𝑗 enumerates observation units within the areas. 
Assuming normality of the error terms 𝑢𝑢𝑖𝑖 and 𝜖𝜖𝑖𝑖𝑖𝑖, likelihood for the model as a whole can be 
derived and maximized to give parameter estimates. Model (17) allows the analyst to answer a 
variety of questions, including both the standard questions of the traditional regression analysis, 
such as the impact of covariates 𝑥𝑥𝑖𝑖𝑖𝑖, as well as questions regarding the variability of the outcome 
due to areas (variance 𝜎𝜎𝑢𝑢2 of the area-specific terms 𝑢𝑢). Predictions of the area effects that 
“borrow strength” across similar units, referred to as empirical Bayes predictions, are given by 

 𝑢𝑢�𝑖𝑖𝐸𝐸𝐸𝐸 = 𝛾𝛾𝑖𝑖
1
𝑛𝑛𝑖𝑖
∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽̂𝛽)𝑛𝑛𝑖𝑖
𝑗𝑗=1 ;     𝛾𝛾𝑖𝑖 =  𝜎𝜎�𝑢𝑢2

𝜎𝜎�𝑢𝑢2+
𝜎𝜎�𝜖𝜖
2

𝑛𝑛𝑖𝑖

;  𝕍𝕍[𝑢𝑢�𝑖𝑖𝐸𝐸𝐸𝐸] = (1 − 𝛾𝛾𝑖𝑖)𝜎𝜎�𝑢𝑢2 . (39) 

The final composite estimates of the area means are given by 

 𝜇𝜇�𝑖𝑖 = 𝑋𝑋𝑖𝑖⋅′ 𝛽̂𝛽 + 𝑢𝑢�𝑖𝑖𝐸𝐸𝐸𝐸;     𝕍𝕍[𝑦𝑦�𝑖𝑖⋅] = 𝕍𝕍[𝑢𝑢�𝑖𝑖𝐸𝐸𝐸𝐸] + 𝑋𝑋𝑖𝑖⋅′ 𝕍𝕍�𝛽̂𝛽�𝑋𝑋𝑖𝑖⋅  . (40) 

This is a simplified expression for the census situation typical for the current application. Full 
expressions for the small area estimates when the units 𝑗𝑗 are sampled within area 𝑖𝑖 are given in 

167 Demidenko, E. 2013. Mixed Models: Theory and Applications with R, 2nd edition. Hoboken, New Jersey: Wiley. 
168 Raudenbush, S.W., and A.S. Bryk. 2002. Hierarchical Linear Models, 2nd edition. Thousand Oaks, California: 
SAGE Publications. 
169 Hox, J. 2010. Multilevel Analysis: Techniques and Applications, 2nd edition. New York: Routledge. 
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Rao.170 The second term in the variance expression in (19) is the textbook variance of the 
prediction error from a linear regression model. From expression (18) for empirical Bayes 
prediction and its variance, it can be seen how the multilevel model improves the quality of the 
estimates by trading off the sources of information with different precision. Part of the reduction 
comes from the explanatory power of the model, so that 𝜎𝜎𝜖𝜖2 + 𝜎𝜎𝑢𝑢2 < 𝜎𝜎𝑦𝑦2 . The variance is reduced 
to the extent that the model drives the error variances 𝜎𝜎𝑢𝑢2 and 𝜎𝜎𝜖𝜖2 down. Also, empirical Bayes 
estimates of the area effects are being shrunk toward zero so that the area estimates of the 
outcome are shrunk toward the model-implied mean, with shrinkage multipliers producing 
additional variance reduction. Although this effect is generally desirable for estimates that are 
otherwise imprecise, shrinkage towards the mean may be undesirable for the EEOC applications; 
it effectively implies that the company behaves like others in the reference group in terms of 
wage setting, whereas the analysis task at hand is to determine whether the company actually 
differs from others (assumed compliant with the nondiscrimination requirements). Nevertheless, 
if shrinkage affects companies of similar sizes in a similar way, their ordering in terms of 
deviations from the appropriately set wages will likely be retained, still providing valuable 
information to the EEOC investigator. 

Arguably, for the current application, the statistical model may need to incorporate more terms to 
account for the complex impacts of the different attributes of an establishment: 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝑢𝑢1𝑖𝑖 + 𝑢𝑢2𝑗𝑗 + 𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑘𝑘 +  𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , (41)  

where the outcome is log of pay measure, index 𝑖𝑖 enumerates industries, index 𝑗𝑗 enumerates 
locations, index 𝑘𝑘 enumerates establishments (nested in the interaction of industry and location), 
and index 𝑙𝑙, individuals working in these establishments. Interactions are represented with 
double indices; they may or may not be present in the data, which is a testable assumption. A 
model of such structure is referred to as a cross-classified model. Estimation of such models is 
more complicated than estimation of the simpler multilevel models such as (17) because it 
requires multidimensional numeric integration and other special computational tricks. Once 
parameter estimates are obtained, the empirical best linear unbiased prediction can also be 
obtained from cross-classified models. So far, applications of cross-classified models in small 
area literature have been limited. Fabrizi, Ferrante, and Trivisano adopted a full Bayesian 
approach to produce their estimates, and report efficiency gains equivalent to a 20 percent 
reduction in standard errors for their final estimates.171 Cross-classified models have been 
finding use in other applications that have limited information and cell sizes, such as risk 
assessment in industrial safety.172 

Measures of Unequal Pay Dispersion 
Most of the above discussion has focused on measures of central tendency of pay because the 
regression models discussed throughout this report are aimed at the measures of central 

170 Rao 2003, pp. 134–141. 
171 Fabrizi, E., M. Ferrante, and C. Trivisano. 2013. “Small Area Estimation of Labor Productivity for the Italian 
Manufacturing SME Cross-Classified by Region, Industry and Size.” Paper presented at the European Regional 
Science Association. 
172 Yan, Z., and Y.Y. Haimes. 2010. Cross-Classified Hierarchical Bayesian Models for Risk-Based Analysis of 
Complex Systems Under Sparse Data. Reliability Engineering & System Safety 95(7), 764–776. 
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tendency. Tests of other aspects of (conditional) distributions may also be worthy of attention. 
Even when the means of two pay distributions are equal, higher variance in one of the groups 
likely means a presence of a small fraction of highly paid individuals and a larger body of 
individuals that are paid less than the comparison group. Such cases may be worth additional 
investigation. 

The starting point for the analysis of unequal pay dispersion is a comparison of variances. 
“Comparisons of Specific Aspects of the Pay Distribution” above mentioned Bartlett’s test (6) of 
equal variances between groups. Conover, Johnson, and Johnson provide a staggering list of 56 
tests to compare homogeneity of variances.173 As with the test for the measures of central 
tendencies, these tests have limitations in the context of the current application. Good notes that 
these tests rely on some combination of the following assumptions: normal distribution of the 
samples, equal means or other location parameters, equal sizes of samples, and samples that are 
large enough for asymptotic approximations.174 These conditions are likely to be violated with 
the typical pay data that EEOC will encounter. He then proceeds to offer a permutation test 
based on the absolute deviations from the median (excluding the zero value for the median itself 
when the sample size is odd, and one of the two identical nearest values when the sample size is 
even), and a permutation test based on the spacings between the successive ranks. Good also 
proposes a bootstrap procedure to obtain an asymptotically exact confidence interval for the ratio 
of variances.175 

Just like regression models can be formulated for outcomes per se, specifying the mean 
conditional on covariates, models for the variance can be formulated by running regression with 
an appropriately specified function of residuals as the dependent variable in regression. Harvey 
discussed a two-equation model 

 �
𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖′𝛽𝛽 + 𝑢𝑢𝑖𝑖 ,

𝑙𝑙𝑙𝑙 𝜎𝜎𝑖𝑖2 = 𝑧𝑧𝑖𝑖′𝛼𝛼 + 𝑤𝑤𝑖𝑖,
 𝑤𝑤𝑖𝑖 = 𝑙𝑙𝑙𝑙 𝑢𝑢�𝑖𝑖

2

𝜎𝜎𝑖𝑖
2 .

176 (42) 

He notes that a naive two-step estimation procedure (retrieving residuals from the first equation 
and running the second equation) produces inconsistent estimates for the intercept term of the 
second equation (due to skewness of the distribution of the log-variance error terms 𝑤𝑤𝑖𝑖) and 
produces inefficient estimates for the second equation; he argues in favor of a joint maximum 
likelihood estimation procedure. Davidian and Carroll extend this approach to allow the variance 
function to be of arbitrary form and to contain the parameters from the first equation.177 They 
stress that when variances are a function of the mean (as is the case with the popular lognormal 
distribution, see (10)), or heteroskedasticity is exacerbated by skewness, then the ordinary least 
squares regression is unstable, and the generalized least squares that takes into account the 
different variances and other forms of joint estimation of the system such as (21) improves the 

173 Conover, W.J., M.E. Johnson, and M.M. Johnson. 1981. “A Comparative Study of Tests for Homogeneity of 
Variances, With Applications to the Outer Continental Shelf Bidding Data.” Technometrics 23(4), 351–361. 
174 Good 2005, p. 58. 
175 Good 2005, p. 61. 
176 Harvey, A.C. 1976. “Estimating Regression Models With Multiplicative Heteroscedasticity.” 
Econometrica 44(3), 461–465. 
177 Davidian, M., and R.J. Carroll. 1987. “Variance Function Estimation.” Journal of the American Statistical 
Association 82(400), 1079–1091. 
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results notably. Extensions of hierarchical models that incorporate explicit models for 
heteroskedasticity are discussed in Skrondal and Rabe-Hesketh.178 

Tests for Outlying Pay Disparities Greater Than Industry or Location Pay 
Differences 
The best statistical procedures that account for both the industry and the location differentials 
seem to be the mixed model (24) or its appropriate interval regression version for band data. 
Therefore, the following procedure can be proposed: 

1. Fit a cross-classified, multilevel model of pay using location and industry as cross-
classified random effects, and both the control variables (job categories) and design 
variables (demographics such as race, ethnicity, and gender) as fixed effects. 

a. Implementation option: exclude the current establishment from the model 
(jackknife/cross-validation approach). 

2. Obtain predictions for the level of pay for industry-location combination for the given 
levels of the control variables (job categories) and the reference level of the design 
variables (such as white males). Retrieve both the mean and the standard error of the 
prediction; account for the variances of random effects in the latter. 

3. Compare the group means from the establishment with the predictions. 

This procedure is exemplified in the “Examples” section below. 

Determination of Appropriate Tests for Different Units of Analysis 
In an earlier report, we identified the following potential groups for analysis: an individual, a 
group, or a social organization. Currently, individual-level data are collected through IRS Form 
W-2 data. OES and EEOC collect data by group, such as occupation; EEOC also collects data by 
race, ethnicity, and gender. 

Analyses With the Individual Data 
The individual-level data, if available and properly collected, would provide the most accurate 
input to analysis of discrimination. The following are the unique analyses that are feasible only 
with the individual data: 

1. Direct estimation of the most relevant regression model (1) would be feasible with such 
data, leading to direct tests of discrimination in pay (in the form of the average ratios of 
the levels of pay per analyzed target groups, adjusting for the control variables). 

2. Permutation testing of hypotheses (2) or (3) of equal pay across groups (see “Permutation 
Testing” above). 

3. Comparisons of the distributions via nonparametric tests (see “Nonparametric 
Distribution Comparison” above). 

4. Modified t-tests (7) of equality of the means of two samples. 

For all of the above statistical procedures, because individual-level data are available, either the 
original levels of pay or their transformed values can be analyzed. Regression (1) implies taking 
logs of pay levels as the preferred transformation. Because of the burden it would impose on 

178 Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variables Modeling. Boca Raton: Florida: 
Chapman & Hall/CRC. 
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respondents as well as the need for confidentiality, individual data will not be collected. Group-
level data analyses are described below. 

Analyses With the Group-Level Data 
The group-level data will consist of numeric summaries of the pay distribution for a target group. 
These summaries may include measures of central tendency (mean and median), dispersion 
(variance, interquartile range, minimum, and maximum), or pay bands (as is currently 
implemented in EEO-4 form). The methods applicable to the grouped pay data include: 

1. Interval regression (see “Analysis With Grouped Data” above). 
2. Estimation of Lorenz curve, and establishing stochastic dominance via generalized 

Lorenz curves (see “Error Rates of Statistical Tests” and “Analysis With Grouped Data” 
above). 

3. Comparisons of the distributions via nonparametric tests (see “Nonparametric 
Distribution Comparison” above). 

Analyses That May Be Feasible With the Grouped Data 
Summary data at the organization level will likely be of very limited use in EEOC practice. One 
possible analysis is to relate the level of pay in the current firm to those with similar location and 
industry. A fixed-effect regression model with industry and location indicators can be fit to such 
data, possibly incorporating the establishment size as an analytic weight179 to account for 
different precision of the mean pay that comes from firms of different sizes, or by correcting the 
standard errors for an unspecified form of heteroskedasticity.180 Alternatively, a random-effect, 
cross-classified mixed model can be fit to the data,181 and an empirical Bayes prediction can be 
obtained for the expected level of pay for a given location and industry, as discussed above in 
“Improving Estimates’ Accuracy By Borrowing Strength Across Industries and Locations.” 

Examples 

CPS 2014 ASEC Data 
March CPS Annual Social and Economic Supplement (ASEC) data were downloaded from the 
International Public Use Microdata Series website for the 2010 to 2014 period.182  

Wage equation 
The Mincer wage equation (1) was estimated as if the data were independent and identically 
distributed, as well as with the full specification of the sampling design using the successive 
difference replicate weights provided for CPS data. 5,006 individuals reporting a nonzero, 
nonmissing hourly wage were used in this regression. The following variables were used in this 
regression analysis: 

179 Institute for Digital Research and Education, University of California at Los Angeles. “What Types of Weights 
Do SAS, Stata and SPSS Support?” Available at www.ats.ucla.edu/stat/stata/faq/weights.htm. 
180 White, H. 1980. “A Heteroskedasticity-Consistent Covariance-Matrix Estimator and a Direct Test for 
Heteroskedasticity.” Econometrica 48(4), 817–838. 
181 Rasbash, J., and H. Goldstein. 1994. “Efficient Analysis of Mixed Hierarchical and Cross-Classified Random 
Structures Using a Multilevel Model.” Journal of Educational and Behavioral Statistics 19(4), 337–350. 
182 King, M., S. Ruggles, J.T. Alexander, S. Flood, K. Genadek, M.B. Schroeder, B. Trampe, and R. Vick. 2010. 
Integrated Public Use Microdata Series, Current Population Survey: Version 3.0. [Machine-readable database]. 
Minneapolis: University of Minnesota. 
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1. Control variables:  
a. Identifiers of industry: It is unclear whether CPS uses a standard scheme such as 

NAICS; the original four-digit variable with 261 unique values was recoded into 
two-digit variable by dropping the last two digits, producing 92 unique values, of 
which 90 values occur with the usable wage data. 

b. Identifiers of occupation: CPS uses a 4-digit coding scheme with 484 unique 
values; they were recoded to a 2-digit variable by dropping the last 2 digits, 
producing 99 unique values, of which 98 values occur with the usable wage data. 

c. Education: The five categories used were below high school, high school/GED, 
some college, bachelor’s degree, and professional or doctoral degree. 

d. Class of worker: Four values across the usable wage data were used: wage/salary 
with private employers, federal government, state government, and local 
government. 

2. Design/demographic variables: 
a. Sex. 
b. Race/ethnicity: The categories used were non-Hispanic white, non-Hispanic 

black, non-Hispanic Asian, non-Hispanic all other races or multiple races, and 
Hispanic. 

c. Interaction of sex and race. 

The results of the wage equation estimation are reported in Table 1. Three regressions were run 
with no survey design specifications and with full survey design settings. The coding of sex and 
race/ethnicity is in terms of the main effects. Sufficient degrees of freedom exist in the 
unweighted regression. In the regression that accounts for survey design, the survey design 
degrees of freedom are based on the number of replicate weights provided for CPS data, which is 
equal to 160. This number is exceeded with the specifications that involve control variables, so 
the standard errors may need to be treated with caution. Comparison of the specification with 
demographic variables only (columns 2 and 5) and control + demographic variables (columns 3 
and 6) illustrates the danger of not having enough controls. When only the demographic 
variables are being used, black race and Hispanic ethnicity appear with significantly negative 
coefficients, implying that these groups are paid less than the reference group (white males). 
However, once additional controls are added, the effect of race/ethnicity is reduced, with the 
effect explained by the differences in education and occupations among these demographic 
groups. Coefficients for females are consistently negative: –13 percent in the demographics-only 
specification (overstating the effect) and –10 percent with the appropriate controls for industry, 
occupation, and education. The estimate of the coefficient for black race indicates pay reduced 
by14 percent (highly significant) to 7.5 percent (significant only at the 5% level). 

Table 1. Results of wage equation estimation, with 95% CI. 
 Unweighted (assumed independent and 

identically distributed) 
Accounting for survey design 

 Control 
only 

Design only Control + 
design  

Control 
only 

Design only Control + 
design  

White male Base Base Base Base Base Base 
Black race  -0.129***  -0.052   -0.137**  -0.075* 
  [ -0.202,-

0.055] 
[ -0.115, 
0.012] 

 [-0.221, -
0.053] 

[-0.146,-0.004]  
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Asian race  -0.019 0.007  -0.015 0.011    
  [-0.115, 

0.077] 
[-0.071, 
0.086] 

 [-0.115,0.086] [-0.067, 0.088]  

Other race  -0.086 -0.060  -0.119 -0.089    
  [-0.221, 

0.050] 
[-0.164, 
0.045] 

 [-0.268,0.030] [-0.209,0.032]  

Hispanic race  -0.187*** -0.040  -0.185*** -0.047    
  [-0.237, -

0.137] 
[-0.090, 
0.010] 

 [-0.234,-
0.136] 

[-0.104,0.010]  

Female  -0.134*** -0.096***  -0.133*** -0.102*** 
  [-0.168, -

0.100] 
[-0.129, -
0.063] 

 [-0.168,-
0.098] 

[-0.135,-0.069] 

Black female  0.057 0.036  0.048 0.045    
  [-0.036, 

0.150] 
[-0.044, 
0.115] 

 [-0.050, 
0.146] 

[-0.042,0.133]    

Asian female  0.073 0.075  0.096 0.051    
  [-0.061, 

0.207] 
[-0.030, 
0.181] 

 [-0.036, 
0.229] 

[-0.055,0.157]    

Other female  -0.090 -0.081  -0.124 -0.066    
  [-0.273, 

0.092] 
[-0.221, 
0.059] 

 [-0.335, 
0.088] 

[-0.244, 0.111]    

Hispanic 
female 

 0.040 0.038  0.038 0.052    

  [-0.030, 
0.109] 

[-0.024, 
0.100] 

 [-0.030, 
0.105] 

[-0.013, 0.116]    

R2 0.423 0.032 0.431 0.414 0.034 0.422 
Var[residual] 0.1489 0.2408 0.1473 n/a n/a  
D.f. per 
parameter 

25.9 556.2 24.8 n/a n/a n/a 

Note: Dummy variables for 92 industries, 98 occupations, 5 education groups and 4 class of 
worker groups are incorporated in the specifications “Control” and “Control + Design.” The 
entries are regression coefficients and 95% confidence intervals. *Significant at 5% level; 
**Significant at 1% level; ***Significant at 0.1% level. 

Wage and salary income corrected for hours worked 
To illustrate how the correction of the total wage and salary income for hours worked can be 
developed, the regression model was fit to a different set of variables and a different set of CPS 
respondents who provided the data. Using a much larger sample of 61,617 individuals, we 
analyzed the log of wage and salary income as the dependent variable and the sum of logs of the 
usual hours worked per week and weeks worked last year (the sum of logs is the log of the 
approximate total hours worked last year) as regression offset. The coefficient of the latter 
variable was restricted to be negative one, effectively providing the interpretation of the model as 
a whole as the effective pay rate per hour. The results are provided in Table 2. 
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Table 2. Results of estimation for wage/salary income corrected for hours worked. 
 Unweighted (assumed independent and identically distributed) 
 Offset 

only 
Control 
only 

Design only Control + design  Control + design + 
FTE 

White male Not 
used 

Not 
used 

Base Base Base 

Black race   -0.261 -0.120 -0.117    
   [-0.291,-0.231]*** [-0.146,-0.093]*** [-0.143,-0.091]*** 
Asian race   0.011 -0.068 -0.072    
   [-0.028,0.051] [-0.101,-0.036]*** [-0.104,-0.041]*** 
Other race   -0.246 -0.093 -0.089    
   [-0.298,-0.194]*** [-0.138,-0.049]*** [-0.133,-0.045]*** 
Hispanic race   -0.367 -0.101 -0.108    
   [-0.387,-0.347]*** [-0.119,-0.082]*** [-0.126,-0.089]*** 
Female   -0.240 -0.185 -0.178    
   [-0.255,-0.224]*** [-0.200,-0.170]*** [-0.193,-0.163]*** 
Black female   0.110 0.064 0.055    
   [0.069,0.150]*** [0.029,0.099]*** [0.021,0.090]**  
Asian female   0.072 0.100 0.098    
   [0.017,0.127]* [0.056,0.144]*** [0.054,0.142]*** 
Other female   0.107 0.052 0.044    
   [0.035,0.179]** [-0.010,0.114] [-0.018,0.105]    
Hispanic 
female 

  0.097 0.066 0.070    

   [0.068,0.126]*** [0.041,0.092]*** [0.045,0.096]*** 
Full-time work     F(10,61399)=106.99 
R2 0 0.354 0.046 0.363 0.377    
D.f. per 
parameter 

 311.2 7242.6 297.7 283.9    

Var[residual] 0.6289 0.4061 0.6003 0.4004 0.3919    
 Accounting for survey design 
 Offset 

only 
Control 
only 

Design only Control + design  Control + design + 
FTE 

White male Not 
used 

Not 
used 

Base Base Base 

Black race   -0.283 -0.124 -0.120    
   [-0.316,-0.249]*** [-0.152,-0.096]*** [-0.148,-0.093]*** 
Asian race   0.054 -0.057 -0.063    
   [0.005,0.102]* [-0.097,-0.017]** [-0.101,-0.024]**  
Other race   -0.276 -0.114 -0.108    
   [-0.350,-0.203]*** [-0.177,-0.051]*** [-0.170,-0.046]*** 
Hispanic race   -0.387 -0.117 -0.124    
   [-0.413,-0.361]*** [-0.138,-0.095]*** [-0.146,-0.103]*** 
Female   -0.227 -0.177 -0.171    
   [-0.245,-0.209]*** [-0.196,-0.158]*** [-0.190,-0.152]*** 
Black female   0.108 0.056 0.048    
   [0.063,0.152]*** [0.019,0.093]** [0.013,0.084]**  
Asian female   0.018 0.070 0.074    
   [-0.040,0.077] [0.021,0.120]** [0.025,0.122]**  
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Other female   0.132 0.061 0.052    
   [0.049,0.216]** [-0.017,0.139] [-0.023,0.127]    
Hispanic 
female 

  0.108 0.074 0.080    

   [0.075,0.141]*** [0.043,0.104]*** [0.050,0.110]*** 
Full-time work     𝜒𝜒2(10) = 765.00 
Note: Dummy variables for 92 industries, 98 occupations, 5 education groups and 4 class of worker 
groups are incorporated in all the specifications with “Control.” Six dummy variables for weeks worked 
last year and the interaction of hours worked per week with full-time status (<35 hours/week, part time; 
35 to 50 hours/week, full time; >50 hours/week, overtime) are incorporated in the “Control + design + 
FTE” specifications. Coefficient of the total hours worked last year is constrained to –1. The entries are 
regression coefficients and 95% confidence intervals. *Significant at 5% level; **Significant at 1% level; 
***Significant at 0.1% level. 

One immediate observation is that the demographic variables are highly significant in all 
specifications, with main effects of race/ethnicity and gender suggesting significantly lower 
incomes. The interactions of race/ethnicity and female, however, are all positive and significant, 
except for other female, although the magnitudes are all lower than the main effect of gender; 
that is, nonwhite females earn less than nonwhite males in the same race/ethnicity group, but the 
difference from the males in their respective race/ethnicity group is smaller than the difference 
between white males and females. Accounting for survey design and reweighting of the 
demographic groups reduced the significance of some of these demographic variables. To 
investigate sensitivity to the assumption of a linear relation between the total hours worked in a 
year and the total wage/salary compensation, additional variables were introduced in the last 
column: six dummy variables for weeks worked last year (1–13 weeks, 14–26 weeks, 27–39 
weeks, 40–47 weeks, 48–49 weeks, 50–52 weeks), and the interaction of hours worked per week 
with the full-time status (coded with three categories: <35 hours/week, part time; 35 to 50 
hours/week, full time; and >50 hours/week, overtime). With these variables included, the R2 
improved somewhat, but the coefficients of the demographic variables remained mostly 
unchanged (in the survey regression, nearly uniformly by a factor of two). The coefficients of 
these additional variables (not reported) indicated that the compensation of workers who did not 
work the full year was approximately 10 percent lower per hour whenever they worked fewer 
than 50 weeks. The economic interpretation of this finding is that employers provide higher 
compensation per hour (that is, disproportionately higher total compensation) to the permanent 
employees. The effect of hours per week was inconclusive (see Figure 5). Although the stability 
of the demographic coefficients between the last two columns is encouraging, we have to 
recognize the varying patterns of compensation for employees who work different hours. As a 
result, pooling together into a single cell the employees who may have received the same 
compensation from working different hours, and analyzing them with a single offset as the 
format of the proposed EEOC form suggests, may lead to biases that are difficult to quantify 
because of the model misspecification with respect to the time commitments required by the 
different positions. 
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Figure 6. Differences in pay per hour as a function of the number of hours worked in a week. 
  

62 
 



T-tests 
T-tests were conducted for two reference groups of industry and occupation. The first group is 
composed of some of the largest industries and occupations found in the CPS, namely the 
hospitality and food industries. This group contains 85 males and 83 females in CPS data for a 
total of 168 individuals (see Table 3). Analysis of this group may be indicative of a small 
establishment with balanced employment. 

Table 3. Group A for CPS two-sample comparisons. 
 Chefs and 

head 
cooks 

First-line 
supervisors 

Cooks Food 
prep 
work 

Bartenders Combined 
food 
preparation 
and serving 

Counter 
attendants 

Traveler 
accommodation 

  1  1   

RV parks and camps    1    
Restaurants and other 
food services 

12 18 57 39 10 12 14 

Drinking places, 
alcohol 

 1   2   

The results of the various flavors of t-tests are reported in Table 4. Both the sample sizes and 
variances are close to each other, and the degrees of freedom are very close to the maximum 
possible values of 83+85-2=166. No evidence exists of wage differences between males and 
females. Correction for skewness appears superfluous, and this correction does not change the t-
statistic very much given the relatively large sample sizes in both groups. 

Table 4. T-tests for Group A of CPS two-sample comparisons. 
 Group Mean Std. 

dev. 
Std. 
error 

N 𝑡𝑡-
statistic 

D.f. Two-
sided 
P-
value 

95% CI 

Hourly wage, 
unequal variances 

Males 9.897 3.546 0.681 85 0.681 162.6 0.499 Means: 
(-0.654, 
1.343) 

Females 9.553 2.991 0.328 83 

Log hourly wage, 
unequal variances 

Males 2.234 0.350 0.038 85 0.429 164.2 0.669 Means:  
(-0.078, 
0.122) 

Females 2.212 0.307 0.034 83 

Hourly wage, 
unequal variances, 
corrected for 
skewness 

     0.691 162.6 0.980  

Bootstrap, hourly 
wage: 
Normal CI 
 
Percentile CI 
 
Bias-corrected, 
accelerated CI 

     0.680   t-statistic: 
 
N (-1.301, 
2.661) 
P (-1.414, 
2.522) 
BCa 
(-1.367, 
2.524) 
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The second group used in comparisons of males and females is the group of elementary and 
secondary school teachers, which consisted of 4 males and 22 females (see Table 5). It thus 
represents a small sample that is heavily unbalanced by gender. A somewhat protective effect is 
offered by the smaller variance (8.58 vs. 10.05) of the smaller group (males). Still, the 
Satterthwaite degrees of freedom pretty much correspond to the smallest sample size (4.64 for 
comparisons of mean levels of pay, 6.10 for comparisons of the mean levels of logs). Correction 
for skewness produces a more pronounced effect on the test statistic than in the previous group 
and results in a p-value that is very similar to that in the t-test of logs. Imbalance and asymmetry 
of the situation are especially vividly seen in the difference of the bootstrap confidence intervals; 
although the bootstrap bias correction brings the t-statistic down, both percentile and bias-
corrected intervals bring the confidence limits up compared with the symmetric normal interval. 
The implicit p-values from these confidence intervals are below 0.05, because they do not cover 
zero. 

Table 5. T-tests for Group B of CPS two-sample comparisons. 
 Group Mean Std. 

dev. 
Std. 
error 

N 𝑡𝑡-
statistic 

D.f. Two-
sided 
P-
value 

95% CI 

Hourly wage, 
unequal variances 

Males 30.94 8.58 4.292 4 1.697 4.64 0.155 Mean: 
(-4.484, 
20.76) 

Females 22.80 10.05 2.142 22 

Log hourly wage, 
unequal variances 

Males 3.403 0.276 0.138 4 2.208 6.10 0.069 Mean:  
(-0.039, 
0.770) 

Females 3.037 0.432 0.092 22 

Hourly wage, 
unequal variances, 
corrected for 
skewness 

     1.824 4.64 0.132  

Bootstrap, hourly 
wage: 
Normal CI 
 
Percentile CI 
 
Bias-corrected, 
accelerated CI 

     1.516   t-statistic: 
 
N (-0.288, 
3.320) 
P (0.083, 
3.617) 
BCa 
(0.086, 
3.644) 

Distribution comparison tests 
Nonparametric tests were conducted for the two groups identified in the previous sections. The 
results are given in Table 6. This analysis unveiled differences in a categorical variable of 
race/ethnicity that has more than two levels (and therefore is not amenable to modified t-tests or 
Kolmogorov-Smirnov tests) in the first group. These analyses were conducted on unweighted 
data, which is inappropriate for CPS given its complex survey design. 
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Table 6. Nonparametric distribution comparison tests for subsets of CPS data. 
CPS subset Factor Kolmogorov-

Smirnov p-value 
Kruskal-Wallis  

p-value 
Group A: food industry Gender 0.715 0.6219 
 Race/ethnicity N/A 0.001 
 Gender by race/ethnicity N/A 0.018 
Group B: elementary 
and secondary schools 

Gender 0.158 0.094 

Permutation tests 
For permutation testing, several implementation options should be considered. Either the 
outcome variables (pay) or the variables of interest (demographics) can be permuted. 
Permutations can be carried out for the full data set, or within cells identified by the control 
variables (industry, location, job category). We produced permutation analogues of t-tests to 
compare mean pay across sex as well as an analysis of variables with multiple categories through 
ANOVA. Because permutation testing works best for one-sided rejection regions, the 
appropriate permutation test statistic to compare means of two groups is the total for one of the 
groups.183  The rejection region for F-statistics is already of the form “F > critical value,” so the 
ANOVA F-statistic was permuted with no modifications. One thousand permutations were taken 
in each of the analyses. The results are reported in Table 7. They are qualitatively comparable to 
the findings reported above. 

Table 7. Permutation testing of differences between demographic groups in subsets of CPS 
data. 
CPS subset Analysis and statistic permuted Permutation by… p-value 
Group A: Food 
industry 

Total, males, unweighted Outcome (hourly wage) 0.262 
Total, males, using survey weights Outcome (hourly wage) 0.079 
ANOVA (hourly wage on sex), 
unweighted, F-statistic 

Outcome (hourly wage) 0.473 

ANOVA (hourly wage on sex), 
unweighted, F-statistic 

Demographic variable (sex) 0.495 

ANOVA (hourly wage on 
race/ethnicity), unweighted, F-
statistic 

Outcome (hourly wage) 0.032 

ANOVA (hourly wage on sex), 
unweighted, F-statistic 

Demographic variable (sex 
by race/ethnicity interaction) 

0.177 

Group B: 
Elementary and 
secondary schools 

Total, males, unweighted Outcome (hourly wage) 0.069 
Total, males, using survey weights Outcome (hourly wage) 0.042 
ANOVA (hourly wage on sex), F-
statistic 

Outcome (hourly wage) 0.139 

ANOVA (hourly wage on sex), F-
statistic 

Demographic variable (sex) 0.155 

Permutation can also be applied in regression analysis. We applied permutation of the outcome 
for the regression model with survey design in control + design model specification, last column 
of Table 1. The permuted statistic was the Wald test for whether the coefficient of sex is equal to 

183 Good 2005, pp. 51–54.  
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zero (that is, the square of the t-statistic, the ratio of the coefficient estimate to its standard error). 
In none of the 1,000 replicates did the permuted statistic exceed its observed value, resulting in 
the permutation p-value < 0.001. 

The permutation testing approach provides for a simple visualization via plots of the permuted 
values with overlaid observed values and the graphical interpretation of the p-value. These 
distributions are simulated sampling distributions of the test statistics under the null, and they 
include the potential deviations from the standard reference distributions due to nonnormality, 
small cell sizes, and so on. The distribution of the total in Figure 6(a) is approximately normal, 
whereas the distribution of the F-statistic in Figure 6(b) shows the features of the F-distribution 
with one degree of freedom in the numerator (a vertical asymptote of the density near 0, long 
right tail). The p-values are based on the counts of the number of permuted samples that 
produced values greater than the observed ones, which are shown by vertical lines on the plots.  
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(a) Permutation test statistic = total for males (Group A, outcome = hourly wage). 

 

(b) Permutation test statistic = F-statistics from ANOVA (Group A, outcome = hourly wage). 

Figure 7. Permutation distributions of the test statistics. 
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Summary of the findings 
Table 8 summarizes the findings, reporting the lowest and the highest p-values across the various 
tests reported in the previous sections.  

Table 8. Summary of the testing of differences between demographic groups in subsets of CPS 
data. 
CPS subset Factor Lowest p-value Highest p-value 
Group A: Food 
industry 

Gender 0.079 
(permutation test, 
weighted means) 

0.715 
(Kolmogorov-Smirnov test 
of equality of distributions, 

unweighted) 
Race/ethnicity 0.001 

(Kruskal-Wallis non-
parametric ANOVA, 

unweighted) 

0.155 
(t-test assuming unequal 
variances, no skewness 

corrections, unweighted) 
Gender by race/ethnicity 0.018 

(Kruskal-Wallis non-
parametric ANOVA, 

unweighted) 

0.177 
(permutation test, 

unweighted) 

Group B: 
Elementary and 
secondary 
schools 

Gender 0.042 
(permutation test, 
weighted means) 

0.158 
(Kolmogorov-Smirnov test 
of equality of distributions, 

unweighted) 

Power analysis with continuous data 
Ad-hoc power analysis was conducted with the estimates from the full survey specification of the 
control + design regression specification reported in Table 1, with standard errors accounting for 
the survey design effects. The power curves for the traditional 1% and 5% levels of significance 
are shown in Figure 7. Only for the medium size companies with several hundred employees 
does the power exceed 50 percent. 
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Figure 8. Power curves for detecting the 10% difference of female wages/salaries. 

As argued above in “Error Rates of Statistical Tests,” an alternative view on the issue of error 
rates and power may involve fixing the effect size and the target power and varying the 
significance level (or the size of the test) with the sample size (establishment size) to equate 
enforcement efforts across the spectrum of company sizes. The significance levels that would 
equate the power of the test are shown in Figure 8. The significance level is the fraction of 
companies that do not discriminate that will be flagged for investigation, which is a measure of 
operational efficiency. A high rate of type I error may be wasteful. 

 

 

69 
 



 

Figure 9. Significance level of the tests for detecting the 10% difference of female 
wages/salaries at a given power. 

Mixed/multilevel model analysis 
As discussed previously, multilevel models can be used to incorporate a large number of random 
effects for locations, industries, or occupations to borrow strength across establishments that 
share similar characteristics. Specification (24) with cross-classified random effects of location 
(51 states and the District of Columbia), industry (90 values of ind100 variable) and occupation 
(99 values of occ100 variable) was run, with the results reported in Table 9 (which is directly 
comparable with Table 1). Weights were not included because weighted estimation with cross-
classified models is not supported. As with the linear regression model, the mixed multilevel 
model finds that the wages/salaries of females are about 10% lower than those of males. Weaker 
evidence exists that the wages/salaries of Hispanic employees are lower than those of the 
reference group (white males). 

Table 9. Mixed effect modeling of the wage equation with CPS data. 
 Unweighted (assumed independent and identically 

distributed) 
 Control only Control + design 

White male Base Base 
Black race  -0.054 

  [-0.111,0.004] 
Asian race  -0.011 

  [-0.086,0.064] 
Other race  -0.074 
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  [-0.176,0.029] 
Hispanic race  -0.057 

  [-0.102,-0.012]* 
Female  -0.108 

  [-0.138,-0.078]*** 
Black female  0.038 

  [-0.037,0.112] 
Asian female  0.064 

  [-0.040,0.168] 
Other female  -0.080 

  [-0.219,0.059] 
Hispanic female  0.041 

  [-0.020,0.103] 
Var[ location ] 0.0023 (1.2%) 0.0024 (1.3%) 
Var[ industry ] 0.0101 (5.2%) 0.0087 (4.6%) 

Var[ occupation ] 0.0354 (18.2%) 0.0332 (17.6%) 
Var[ residual ] 0.1465 (75.4%) 0.1446 (76.5%) 

Note: Dummy variables for 92 industries, 98 occupations, 5 groups of education and 4 class of worker 
groups are incorporated in the specifications “Control” and “Control + design.” The entries are 
regression coefficients and 95% confidence intervals. *Significant at 5% level; **Significant at 1% level; 
***Significant at 0.1% level. 

Empirical Bayes predictions of the random effects — both the point estimate, (that is, the 
posterior mode) and the posterior standard deviation — were extracted from the model estimates. 
The results are reported in Table 10 and should be compared with Table 4 and Table 5. In 
regression specification with control variables only, the model appears to have a lower predictive 
power, as indicated by the standard errors that are universally larger than those from regression 
with additional demographic variables. The latter regression provides model-based predictions 
that have smaller standard errors than the direct estimates for mean log hourly wages in Table 4 
and Table 5. However, these estimates are conditionally biased because of Bayesian shrinkage. 

Table 10. Model predictions for log hourly wages in the selected groups of CPS data. 
Group / specification Group Mean Std. 

error 
𝜒𝜒12-
statistic 

Two-
sided 
P-
value 

% model in 
total 
prediction 
variance 

Group A (food sector), regression 
with control variables only 

Males 2.215 0.056 0.00 0.993 96.1% 
Females 2.215 0.056 

Group B (public schools), regression 
with control variables only 

Males 2.287 0.080 0.37 0.543 73.1% 
Females 2.999 0.071 

Group A (food sector), regression 
with control + sex/race/ethnicity 
variables only 

Males 2.269 0.013 33.21 0.000 96.0% 
Females 2.174 0.010 

Group B (public schools), regression 
with control + sex/race/ethnicity 
variables only 

Males 2.263 0.036 1.19% 0.276 71.9% 
Females 2.225 0.029 
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Note that although the methodology is widely used in areas ranging from educational research 
(to model the hierarchical structures of districts, schools, classes, and students nested one into 
another) to biostatistics (to model visits nested in patients nested in clinics), economists tend to 
rely on fixed-effects methods (as exemplified by the default regression model (1) with the full set 
of dummy variables for locations, industries and occupations) rather than random-effects 
methods. In many panel data econometric applications, random-effect models are often found to 
fail Hausman specification tests and therefore are at risk of producing biased estimates of 
regression parameters.184  

Optimal grouping of incomes 
Davies and Shorrocks’ optimal grouping procedure to maximize the Gini index of the grouped 
data was applied to the CPS data for total wage and salary income (incwage) because it provides 
the economy-wide distribution of labor incomes.185 First, the search for the bounds of the 
optimal partition was implemented on the full data set of 65,183 individuals with nonzero wage 
and salary incomes for groups of 8, 10, 12, 15, and 20. The first part of Davies-Shorrocks 
algorithm provides the lower and upper bounds on the partitions that satisfy the optimality 
conditions of distorting inequality as little as possible. Within the first part of the algorithm, the 
possible cutoff points are enumerated from the bottom of the distribution up, in an optimized 
way guided by the mathematical properties of the distribution, to generate the lower bounds on 
the optimal cutoff points; and then the cutoff points are enumerated again from the top of the 
distribution down, to generate the upper bounds.  The second part of the algorithm performs an 
exhaustive search within the bounds thus found to find the optimal grouping. Since most of the 
enumerated combinations satisfy the optimality conditions, the Gini index has to be computed 
for each considered combination of cutoff points. The computational load increases 
combinatorially with the sample size and the number of groups. The final weights were used in 
the analysis to ensure that the distribution is representative of the economy as a whole. The 
results are reported in Table 11.  

184 Wooldridge 2010. 
185 Davies and Shorrocks 1989. 
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Table 11. Upper cutoff points of the optimal groupings of wage and salary income in CPS data. 
Class  Lower bound Upper bound Class  Lower bound Upper bound 

8 groups 15 groups 
35 combinations compared 62 combinations compared 
1 8986 13027 1 2137 10775 
2 18175 25259 2 4776 21220 
3 27907 38246 3 7758 31151 
4 39412 52385 4 10940 41081 
5 54738 72450 5 14792 50775 
6 79693 102556 6 18817 61250 
7 138500 184500 7 23547 72750 
8 ∞ ∞ 8 29951 85900 

10 groups   9 37174 103039 
52 combinations compared 10 46494 126156 
1 6753 10775 11 59648 157263 
2 14445 21270 12 76650 207233 
3 21378 31612 13 107501 312500 
4 29157 42620 14 189500 575000 
5 37915 55030 15 ∞ ∞ 
6 49658 70763 20 groups 
7 65890 91450 79 combinations compared  
8 94363 127250 1 829 10775 
9 164000 228500 2 1759 21220 
10 ∞ ∞ 3 2955 31032 

12 groups 4 4225 40970 
60 combinations compared 5 5837 50468 
1 5388 10775 6 7531 60746 
2 11553 21220 7 9428 71101 
3 17153 31187 8 11305 81550 
4 22957 41454 9 13988 95126 
5 29615 52475 10 16436 110807 
6 37138 65950 11 19944 133410 
7 46457 81350 12 23847 162250 
8 59648 101847 13 29995 200501 
9 76650 131300 14 37174 252000 
10 107501 186178 15 46494 321500 
11 189500 355000 16 59648 410000 
12 ∞ ∞ 17 76650 525000 
   18 107501 722500 
   19 189500 980000 
   20 ∞ ∞ 
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Table 12. Detailed upper cutoff points of the optimal groupings of wage and salary income in 
subsamples of the CPS data. 
Class  Lower 

bound 
Upper bound Optimal Class  Lower 

bound 
Upper 
bound 

Optimal 

8 groups (5% sample; n=3,256) 15 groups (2% sample; n=1,303) 
Run time = 4 hr 24 min; 757,571 combinations Run time = 14 hr 44 min; 1,141,950 combinations 

1 9080 13625 11600 1 1290 11120 4975 
2 18754 25450 22305 2 2880 21546 11620 
3 27795 38111 33265 3 4841 30750 17250 
4 39700 53500 46300 4 7751 40923 22250 
5 56500 73200 64500 5 10828 51350 27750 
6 83500 104500 92500 6 14580 62250 32550 
7 143000 176500 155500 7 18700 74500 39251 
8 ∞ ∞ ∞ 8 23160 90822 46578 

10 groups  (5% sample; n=3,256) 9 29688 111600 55750 
Run time = 3 hr 40 min; 612,175 combinations 10 37489 132000 66500 
1 8210 11270 8537 11 49350 155250 81348 
2 16942 21550 17050 12 64500 192500 104000 
3 24450 31412 24930 13 93500 265000 137500 
4 32880 42061 33126 14 155250 525000 212500 
5 43500 55750 43500 15 ∞ ∞ ∞ 
6 56500 70564 57750 20 groups (1% sample; n=651) 
7 74500 92500 75501 Run time = 5 hr 45 min; 2,419,605 combinations 
8 105500 126000 107000 1 250 11500 3800 
9 176500 217500 179500 2 441 22250 8337 
10 ∞ ∞ ∞ 3 850 31500 13198 

12 groups (2% sample; n=1,303) 4 1750 41500 18500 
Run time = 3 hr 31 min; 1,143,950 combinations 5 2880 51600 22750 
1 3850 11120 6200 6 3300 61000 27250 
2 8537 21546 14580 7 4725 72500 31500 
3 13750 30750 20749 8 6700 87500 36750 
4 18700 41500 27270 9 9800 110600 41500 
5 23160 53500 34501 10 13750 132500 47500 
6 29688 65750 43500 11 18500 155000 54000 
7 37489 81348 53500 12 22750 189500 61000 
8 49350 104000 66500 13 27750 212500 68275 
9 64500 132000 84155 14 34501 237500 78195 
10 93500 182500 116500 15 43500 275000 90822 
11 155250 317500 182500 16 56250 307500 113100 
12 ∞ ∞ ∞ 17 74000 332500 137500 
    18 108000 525000 164000 
    19 174000 725000 275000 
    20 ∞ ∞ ∞ 
 

The bounds clearly are not sufficiently tight to determine the optimal allocation. To obtain one, a 
subsample of CPS data was taken to reduce the computational burden (the algorithms did not 
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converge within 12 hours), and the extension discussed by Davies and Shorrocks to obtain the 
optimal solution was implemented for these subsamples. The results are reported in Table 12.186  

The lower and upper bounds differ from those in Table 11 because of subsampling variability. 
The optimal grouping in the last column provides the cutoff between income groups at which the 
income inequality of the distribution of the total wage and salary income, as expressed by the 
Gini coefficient, is best preserved. For practical purposes, the numbers could be rounded or 
truncated down. The distribution of CPS wage and salary income reflects the total annual income 
that an individual may have received from multiple jobs, so if W-2 income is used in EEOC data 
collection, it may reflect only a part of the total income that an individual received in the part of 
the year they worked for a given establishment. For example, with 10 groups, the brackets could 
be defined as $0 to $7,999, $8,000 to $16,999, $17,000 to $24,999, $25,000 to $32,999, $33,000 
to $42,999, $43,000 to $56,999, $57,000 to $74,999, $75,000 to $104,999, $105,000 to 
$179,999, and $180,000 and above. 

The challenges that we encounter are computational. CPS March Supplement (ASEC) by itself is 
the representative data set of the U.S. economy, but implementing the algorithm on the full data 
set is nearly impossible as computation time increases combinatorially fast (i.e., faster than 
exponentially; more like 𝑂𝑂(𝑛𝑛!) ∼ 𝑂𝑂(𝑛𝑛𝑛𝑛/e𝑛𝑛) than 𝑂𝑂(𝑛𝑛𝑘𝑘) or 𝑂𝑂(𝐴𝐴𝑛𝑛).) The optimization task only 
needs to be performed once, though, so running the algorithm on a larger subset of CPS on a 
more powerful computer remains a possibility.  

The quality of approximation of the earnings distribution by the categorical versions is gauged 
by Figure 9 that plots Lorenz curves based on the original and discretized earnings data. 
Midpoints of the intervals were imputed for the interior points. The value of $115,000 was 
imputed for the upper range of EEO-4 brackets, and the value of $235,000 was imputed for the 
upper range of the proposed brackets, so that the mean incomes with the imputed variables match 
the original mean income. Clearly, while capturing the major aspects of the earnings distribution, 
both versions clearly underestimate inequality in it, as they lie strictly above the Lorenz curve 
based on the original data. 

186 Davies and Shorrocks 1989. 
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Figure 10. Lorenz curves with grouped data. 

Power analysis with grouped data 
Following the methodology outlined above in section “Power analysis with grouped data”, we 
consider several scenarios to compute the asymptotic power of Mann-Whitney-Wilcoxon tests 
with CPS earning distributions and EEO-4 as well as the proposed brackets. 

In the first simulation with CPS earnings data, the power of MWW test was computed against 
the alternative that female earnings are 90% of male earnings, using the EEO-4 income brackets 
as well as the brackets proposed above. The results are depicted in Figure 9. A test at 5% 
significance level only attains nontrivial power when the sample size (establishment size) is well 
into the thousands. The results based on the proposed brackets have somewhat greater power due 
to the better resolution of the underlying earnings distribution. However the differences in gender 
ratios, which effectively limit the power of the test by the size of the smaller of the two groups, 
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also have a pronounced effect on the power of the test, with unbalanced groups producing tests 
of lower power. 

While having the advantage of utilizing the economy-wide, nation-wide distribution of earnings, 
the analysis with CPS data does not condition on control variables, i.e., does not take into 
account the potentially different demographic compositions of different occupations and job 
groups. Earning distributions within more tightly defined economic groups are tighter; while the 
coefficient of variation (ratio of the standard deviation to the mean, a common measure of 
dispersion for skewed distributions)  is about 1 for the CPS distribution as a whole, it is much 
lower within job groups, with typical values of 0.1 to 0.2. 

To analyze the power of the MWW test in these circumstances, we simulated earnings data from 
lognormal distributions with standard deviation of logs (approximately equal to the coefficient of 
variation) of 0.2, and the distribution means of $20,000, $50,000 and $80,000. As the EEO-4 
income brackets are somewhat more detailed at lower levels, the EEO-4 brackets provide better 
power for the group of $20,000. As the proposed brackets are more detailed at higher levels of 
earnings, they provide better power for higher earnings for the group with mean earnings of 
$80,000. The instruments perform about the same for the middle value of $50,000. 

   

Figure 11. Power of Mann-Whitney-Wilcoxon test for CPS data. 
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Figure 12. Power of Mann-Whitney-Wilcoxon test; mean earnings = $20,000, CV=0.2. 

  

Figure 13. Power of Mann-Whitney-Wilcoxon test; mean earnings = $50,000, CV=0.2. 
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Figure 14. Power of Mann-Whitney-Wilcoxon test; mean earnings = $80,000, CV=0.2. 

Simulated EEOC Data 
To analyze realistic person-level data that can be encountered within a company, SAS code was 
written to simulate pay data. The simulation code creates a realistic employment structure that 
reflects the average racial/ethnic and gender composition of job groups in industry. Then the 
Standard Occupational Classification (SOC) job codes are assigned using stratified sampling / 
hot deck from the existing structure of these codes. Finally, wages are imputed by hot deck from 
distributions of the OES wages within a given SOC category. See “Simulation Background” 
memo provided elsewhere for full description. The data set generated with the seed 3344 
(wages_e2012_oes2013_n3344.sas7bdat) was used in the subsequent analysis. The gender 
composition of this simulated firm is given in Table 13. Males dominate in higher paid 
executive, managerial and professional jobs, while females dominate lower paid clerical and 
operator jobs. The simulated firm employs workers of 77 occupations. 

Table 13. Composition of the workforce employed by the simulated firm. 
Job groups MALE FEMALE Total 
Senior Executive 6 1 7  
Middle Manager 27 7 34  
Professional 79 24 103  
Technical 29 6 35  
Sales 4 1 5  
Clerical 4 10 14  
Craft 8 2 10  
Operator 27 31 58  
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Laborer 3 3 6  
Total 187 85 272 

The differences in distributions of salaries of males and females across the firm are striking. As 
Figure 14 shows, both distributions are heavily right skewed, even after the log transformation, 
and there is a greater share of women who receive lower salaries in lower job categories, as 
shown in Table 13. The plots of generalized Lorenz curves (Figure 14) allow avoidance of 
crossings seen in the kernel density plot, which may make the latter somewhat more difficult to 
interpret, and clearly shows that females in the company earn less  males. 
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Figure 15. Kernel density estimates of annual salaries (in logs) in simulated data. 

 

Figure 16. Generalized Lorenz curves by gender in simulated data. 

Wage equation 
As the first benchmark step in the analysis, wage equation was fit to the simulated data. The 
results are shown in Table 14. The control variables in this regression are job type and 
occupation, truncated to the first two digits. Because demographic categories and salaries were 
assigned independently in the simulated data, it is reasonable to expect that the demographic 
variables will not be significant predictors of salary. The simulated data reproduce the qualitative 
results of CPS data, with females and Hispanics showing lower salaries; however, the inclusion 
of the control variables corrects these results, making the demographic predictors insignificant. 
There is also a substantially higher R2 and lower residual variance than in the CPS regression, 
although it should be noted that the CPS regression is fit across a variety of industries and 
locations. The full control + design specification approaches the lower suggested number of 
observations per parameter (13.60 in the current data set, compared with the rule of thumb of 10 
per parameter). 
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Table 14. Wage equation for simulated data. 
 Control only Design only Control + design  

White male Base Base Base 
Female  -0.371 -0.046 
  [-0.620,-0.122]** [-0.115,0.023] 
Black race  -0.168 0.168 
  [-0.591,0.255] [-0.019,0.355] 
Hispanic  -0.408 0.011 
  [-0.744,-0.072]* [-0.066,0.087] 
Asian race  -0.050 -0.004 
  [-0.251,0.151] [-0.069,0.061] 
Black female  -0.283 -0.204 
  [-0.910,0.344] [-0.429,0.021] 
Hispanic female  0.127 0.063 
  [-0.414,0.667] [-0.066,0.191] 
Asian female  -0.006 0.010 
  [-0.394,0.382] [-0.112,0.132] 
R2 0.9344 0.6573 0.9374 
Var[residual] 0.0325 0.4321 0.0319 
D. f. per parameter 20.92 38.86 13.60 
Note: *, significant at 5% level; **, significant at 1% level. 

A version of wage equation was run in the quantile regression form. The quantile being predicted 
was the median. The coefficients in the regression have the interpretation of the differences in 
conditional medians; that is, by how much a median in the distribution of annual salaries differ 
between males and females if that is the only difference between the two employees. Because 
quantile regression does not make distributional assumptions (other than existence of a well-
defined median of the population distribution), it was run both on the original annual salaries 
variable (scaled in thousands of dollars), shown in the top half of Table 15, and for the logs of 
salaries, as shown in the bottom half. The regression with demographic variables only identifies 
the pronounced difference between males and females, however, this difference disappears once 
the job categories and occupations are controlled for. Note however that in the final regression, 
the salaries of black employees have a median that is significantly higher than that of whites. The 
sums of absolute deviations in the last two rows of each block serve as the variant of the total 
and residual variance used in computing R2. It is clear that the regression with demographic 
variables only does not have as much explanatory power as the models with job categories and 
occupations do. 
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Table 15. Quantile regression for wage equation for simulated data. 
 Control only Design only Control + design  

Annual salary, $K    
White male  Base Base 
Female  -35.366 -2.644 
  [-57.399,-13.333]** [-9.157,3.869] 
Black race  -19.124 5.886 
  [-65.792,27.544] [-7.275,19.047] 
Hispanic  -31.617 0.807 
  [-66.632,3.398] [-9.157,10.771] 
Asian race  6.979 0.425 
  [-15.224,29.182] [-5.917,6.767] 
Black female  -0.292 -5.845 
  [-76.374,75.790] [-27.866,16.176] 
Hispanic female  16.827 3.131 
  [-38.459,72.113] [-12.405,18.667] 
Asian female  -2.004 1.057 
  [-41.776,37.768] [-10.248,12.362] 
Sum of absolute residual 
deviations 

1519.552 6216.613 1501.775 

Sum of the raw residual 
deviations 

6601.556 6601.556 6601.556 

Log of annual salary, $K    
White male  Base Base 
Female  -0.559 -0.047    
  [-0.906,-0.213]** [-0.121,0.028]    
Black race  -0.260 0.201    
  [-0.994,0.474] [0.051,0.351]**  
Hispanic  -0.482 0.005    
  [-1.033,0.069] [-0.108,0.119]    
Asian race  0.052 -0.001    
  [-0.297,0.401] [-0.074,0.071]    
Black female  -0.279 -0.214    
  [-1.476,0.917] [-0.465,0.037]    
Hispanic female  0.100 0.104    
  [-0.770,0.969] [-0.073,0.282]    
Asian female  0.050 0.029    
  [-0.576,0.675] [-0.100,0.158]    
Sum of absolute residual 
deviations 

17.580 67.875 17.084    

Sum of the raw residual 
deviations 

74.481 74.481 74.481    

Note: *, significant at 5% level; **, significant at 1% level. 

T-tests 
T-tests were conducted to test for differences between males and females. The results are shown 
in Table 16, and they are somewhat puzzling. Based on the regression results presented in the 
previous section, the greatest driver of the differences in salaries are the job characteristics. 
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Nevertheless, the results across the establishment show significant differences between males 
and females, which must be driven by the differences in the types of jobs they have in the firm 
shown in Table 13. For the t-tests, the group with greater variability (males) has a larger sample 
size, which to some extent balances out the larger variance and boosts the degrees of freedom. 
The tests that assume normal distributions (the t-test in the first line of the table and normal CI in 
the bootstrap section) appear to provide evidence of differences between males and females. 
However, tests that are more accurate in small samples (skewness-corrected t-test; percentile and 
bias-corrected, accelerated bootstrap confidence intervals) dampen that finding and make it 
insignificant at 5% level. This is an example in which the use of statistical technique does matter 
for actionable conclusions. 

A more detailed analysis within job groups was conducted for the larger groups that have five or 
more workers of either gender (middle managers, professionals, technicians, and operators). 
Differences between males and females were not found in any of these groups.
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Table 16. T-tests with simulated data. 
Variable/group Group Mean Std. 

dev. 
Std. 
error 

N 𝑡𝑡-
statistic 

D.f. Two-
sided 
P-
value 

95% CI 

Simulated firm as a whole          
Annual salaries, thousands $; 

unequal variances 
Males 97.95 111.73 8.17 187 2.218 189.3 0.0278 Means: 

(3.22,55.06) Females 68.81 94.88 10.29 85 
Log annual salaries, thousands $; 

unequal variances 
Males 11.22 0.647 0.047 187 4.475 153.7 0.0000 Means:  

(0.221, 0.571) Females 10.83 0.689 0.075 82 
Hourly wage, unequal variances, 

corrected for skewness 
     1.718 189.3 0.0874  

Bootstrap, hourly wage: 
Normal CI 

Percentile CI 
Bias-corrected, accelerated CI 

     2.086   t-statistic: 
Normal: (0.129, 4.044) 
Percentile: (-0.017, 3.838) 
BCa: (-1.594, 3.441) 

Middle managers          
Annual salaries, thousands $; 

unequal variances 
Males 138.09 26.60 5.12 27 -0.748 10.88 0.471 Means: 

(-29.16, 14.38) Females 145.47 22.35 8.44 7 
Hourly wage, unequal variances, 

corrected for skewness 
     -0.756 10.88 0.466  

Bootstrap, hourly wage: 
Normal CI 

Percentile CI 
Bias-corrected, accelerated CI 

     -0.673   t-statistic: 
Normal: (-2.396, 1.049) 
Percentile: (-2.428, 1.028) 
BCa: (-2.681, 0.856) 

Professionals          
Annual salaries, thousands $; 

unequal variances 
Males 92.69 20.54 2.31 79 0.223 42.25 0.824 Means: 

(-7.87, 9.83) Females 91.71 18.26 3.73 24 
Hourly wage, unequal variances, 

corrected for skewness 
     0.235 42.25 0.815  

Bootstrap, hourly wage: 
Normal CI 

Percentile CI 
Bias-corrected, accelerated CI 

     0.209   t-statistic: 
Normal: (-1.642, 2.061) 
Percentile: (-1.573, 2.103) 
BCa: (-1.391, 2.317) 

Technicians          
Annual salaries, thousands $; Males 53.12 4.89 0.91 29 1.251 6.53 0.254 Means: 
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unequal variances Females 49.93 5.85 2.39 6 (-2.93, 9.32) 
Hourly wage, unequal variances, 

corrected for skewness 
     1.297 6.53 0.240  

Bootstrap, hourly wage: 
Normal CI 

Percentile CI 
Bias-corrected, accelerated CI 

     1.410   t-statistic: 
Normal: (-0.777, 3.597) 
Percentile: (-0.567, 3.812) 
BCa: (-0.569, 3.795) 

Operators          
Annual salaries, thousands $; 

unequal variances 
Males 32.86 7.77 1.49 27 1.614 55.91 0.112 Means: 

(-0.84, 7.77) Females 29.39 8.59 1.54 31 
Hourly wage, unequal variances, 

corrected for skewness 
     1.523 55.91 0.133  

Bootstrap, hourly wage: 
Normal CI 

Percentile CI 
Bias-corrected, accelerated CI 

     1.603   t-statistic: 
Normal: (-0.905, 4.112) 
Percentile: (-0.249, 4.571) 
BCa: (-1.063, 3.842) 
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Distribution comparisons 
Table 17 presents comparisons of distributions of wages by nonparametric Kolmogorov-
Smirnov, Kruskal-Wallis and Wilcoxon tests. Although the Kolmogorov-Smirnov and Wilcoxon 
tests are two-sample comparison tests and therefore applicable only to the analysis of the 
differences between a majority group and a compound minority (white compared with nonwhite, 
or male compared with female), the Kruskal-Wallis test is applicable for comparisons in which 
multiple groups are involved (such as race/ethnicity). The p-values of Wilcoxon test are based on 
asymptotic approximation with the exact first two moments of the test statistic distribution. For 
the establishment as a whole, the tests strongly reject the null hypothesis of equality. However, 
more detailed analysis within subgroups shows absence of differences by gender. These tests 
replicate the findings of the overall t-test, producing a strong rejection of equality of 
distributions. Once again, this is not surprising given the distributions plotted in Figure 9. 

Table 17. Nonparametric distribution comparison tests for simulated data. 
Factor Kolmogorov-

Smirnov p-value 
Kruskal-
Wallis  
p-value 

Wilcoxon p-value Wilcoxon test stratified 
by job group, p-value 

Gender 0.000 0.000 0.000 0.064 
Race/ethnicity N/A 0.022   
Gender by race/ethnicity N/A 0.000   

Sensitivity analysis, reported in Table 18, was undertaken to quantify the strength of a 
hypothetical confounder that would be necessary to explain the observed differences between 
genders.187 The results in the second column suggest that, should the gender have zero effect and 
the differences between males and females be due only to an unobserved factor, then this factor 
must have the relative odds of about 2.4 of presence between the two groups to make the results 
insignificant. The results are moderately sensitive to the lack of the measurement of the factor 
responsible for differences in salaries. As a matter of fact, such a factor is the classification into 
job groups, as in the simulation processes the job groups rather than gender drove the difference 
in salaries. Table 13 shows that the odds ratios of employment in the different job groups range 
from a 6:1 male-to-female ratio among senior executives to a 4:10 ratio among clerks. When job 
groups are incorporated, the results are highly sensitive, with values of Γ=1.3 sufficient to 
remove significance of the finding. In other words, the significance of the original Wilcoxon test 
can be easily explained by incorporating job groups as a matching variable. 

Table 18. Sensitivity analysis of the differences between salaries of males and females. 
Γ , the bound on the odds ratio of 
the confounder  

Pooled analysis, upper bound for 
p-value 

Matched job groups analysis, 
upper bound for p-value 

1.0 0.0000 0.0000 
1.1 0.0000 0.0000 
1.2 0.0000 0.0002 
1.3 0.0000 0.0547 
1.4 0.0000 0.5722 
1.5 0.0001 0.9673 
1.6 0.0004 0.9997 
1.7 0.0013 1.0000 

187 Rosenbaum 2002. 
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1.8 0.0034 1.0000 
1.9 0.0077 1.0000 
2.0 0.0156 1.0000 
2.1 0.0286 1.0000 
2.2 0.0485 1.0000 
2.3 0.0765 1.0000 
2.4 0.1132 1.0000 
2.5 0.1588 1.0000 
2.6 0.2125 1.0000 
2.7 0.2728 1.0000 
2.8 0.3380 1.0000 
2.9 0.4059 1.0000 
3.0 0.4742 1.0000 
 

A graphical comparison based on generalized Lorenz curves that takes job groups into account 
can be constructed as follows. Mean earnings within each job groups are computed, and earnings 
of each worker are normalized via dividing their earnings by the mean earnings in their job 
group. If everybody in a job group earns exactly the same amount, then the generalized Lorenz 
curve is the line connecting points (0,0) and (1,1). If discrimination exists in the establishment, 
the generalized Lorenz curves for the normalized income would be ordered vertically. The 
comparison depicted on Figure 17 shows that females earn slightly less than males, controlling 
for the job group, but the overall differences between males and females (vertical distance 
between the male and female curves) are comparable to the earning differences within job groups 
(vertical differences from the equality line). 

 

Figure 17. Generalized Lorenz curves, normalized by job group mean incomes. 
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Permutation tests 
Permutation tests were performed on the simulated data, with results provided in Table 19. 
Although the within-job-group t-tests in Table 16 did not show the differences in the mean pay 
between genders, permutation testing found these differences within some of the job groups. 
Although the analysis across the whole establishment demonstrated differences in salaries 
between males and females, stratified permutation within job groups removed the biases due to 
different gender compositions of the different job groups. In the regression approach, no tangible 
difference existed between permutation across the whole establishment and within the job 
groups, because the method itself controls for the differences in salaries between the job groups. 

Table 19. Permutation tests with simulated data. 
Analysis and statistic permuted Job groups Permutation by… p-value 
Total, males Establishment as a whole Outcome (annual salary) 0.011 
Total, males Establishment as a whole Outcome (annual salary) 

within job groups 
0.708 

Total, males Middle managers Outcome (annual salary) 0.018 
Total, males Professionals Outcome (annual salary) 0.365 
Total, males Technicians Outcome (annual salary) 0.999 
Total, males Operators Outcome (annual salary) 1.000 
ANOVA (annual salary on 
gender), F-statistic 

Establishment as a whole Demographic variable 
(gender) 

0.031 

ANOVA (annual salary on 
gender), F-statistic 

Establishment as a whole Demographic variable 
(gender) within job groups 

0.723 

ANOVA (annual salary on race), 
F-statistic 

Establishment as a whole Demographic variable 
(race) 

0.182 

ANOVA (annual salary on race), 
F-statistic 

Establishment as a whole Demographic variable 
(race) within job groups 

0.815 

Regression (control + design 
specification), F-statistic of the 
Wald test for gender 

Establishment as a whole Demographic variables 
(gender and race) 

0.153 

Regression (control + design 
specification), F-statistic of the 
Wald test for gender 

Establishment as a whole Demographic variables 
(gender and race) within 
job groups 

0.152 

Regression (control + design 
specification), F-statistic of the 
Wald test for race 

Establishment as a whole Demographic variables 
(gender and race) 

0.490 

Regression (control + design 
specification), F-statistic of the 
Wald test for race 

Establishment as a whole Demographic variables 
(gender and race) within 
job groups 

0.464 

 

Visualization of the permutation tests is provided in Figure 10. Simulated permutation 
distributions are shown as histograms, and the observed statistics as vertical lines, so that p-
values are given by the area of the histogram to the right of the observed test statistic. Figure 
10(a) is the permutation of gender across the whole establishment, demonstrating significant 
differences between males and females across it. Figure 10(b) shows conditional permutation 
within job groups. As the job groups drive the difference between pay levels, including them in 
the regression helps explaining most of the between-person variability, leaving gender 
insignificant. Although close to normal, both distributions are asymmetric and slightly skewed to 
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the left. As was seen in Table 16, the t-test required a rather notable correction for skewness 
(from 2.22 to 1.72) in comparisons of mean salaries between groups. These graphs allow 
investigators to observe firsthand the asymmetry of the distributions involved. Also, the 
conditional nature of the second set of permutations is expressed in Figure 10(b) as a much 
tighter range (about 18,000 to about 18,800) than that of Figure 10(a) (about 14,000 to about 
18,800); note that the observed value 18,316 is identical for both graphs because it represents the 
total (in thousands of dollars) of all salaries paid out to males. 

Similar comparisons are drawn from Figure 10(c) and (d). The former represents the 
unconditional permutation, while the latter is conditioned on job groups. Similarly to Figure 6(b), 
Figure 10(c) shows a picture typical for an F-distribution with one degree of freedom in the 
numerator. Although the observed test statistic of 4.35 is identical between the two plots, the 
conditional permutation distribution in Figure 10(d), however, displays a much tighter range and 
an approximately normal shape. The reference distribution for this plot is the noncentral F-
distribution, where the noncentrality parameter is related to the F-statistic from ANOVA of the 
outcome (annual salaries) on the conditioning variable (job groups). When referred to this 
conditional distribution, the F-statistic of 4.35 is no longer significant. 
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(a) Total, males (outcome = annual salary; establishment as a whole; unconditional permutations). 

 

(b) Total, males (outcome = annual salary; establishment as a whole; permutations of gender 
within job groups). 
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(c) ANOVA F-statistic (outcome = annual salary; establishment as a whole; unconditional 
permutations). 

 

(d) ANOVA F-statistic (outcome = annual salary; establishment as a whole; permutations of 
gender. within job groups) 

Figure 18. Permutation distributions of the test statistics with simulated data. 
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Analysis of grouped salary data 
To illustrate the analysis of salary data organized in pay bands, the existing simulated salaries 
were recorded according to the categories currently used in EEO-4. The categories and 
distribution for this simulated firm are reported in Table 20. This tabulation shows issues with 
the categories: the two lowest categories are not used at all, whereas the highest salary category 
is overpopulated, with nearly a half of all simulated employees having salaries in the above 
$70,000 range. 

Table 20. Distribution of salaries in the simulated firm in EEO-4 categories. 
EEO-4 bracket Salary range Count Percent 
1 0–15.9K 0 0% 
2 16K–19.9K 0 0% 
3 20K–24.9K 12 4.41% 
4 25K–32.9K 41 15.07% 
5 33K–42.9K 25 9.19% 
6 43K–54.9K 34 12.50% 
7 55K–69.9K 31 11.40% 
8 70K+ 129 47.43% 

Since most of the implementations of the nonparametric tests expect raw data as inputs, the 
EEO-4 (or similar proposed) forms need to be converted into a micro data set by expanding each 
of the responding cells and creating the observations representing workers in the given cell. For 
instance, in the simulated firm, there are 10 males and 2 females in the professional job group 
earning $55,000 to $69,999. For these cells, 10 observations would need to be created with 
professional job group designation, male gender, and the value of 7 for the 7th income bracket 
that they fall into; and 2 observations would need to be created with professional group 
designation, female gender, and income rank equal to 7.  

Because the salary variable in its grouped form is only an ordinal variable, most of the applicable 
analyses are based on ranks. As discussed previously in “Nonparametric Distribution 
Comparison,” the analogue of the t-test is the test of medians, with the results reported in Table 
21. It shows strong differences for the company as a whole as well as for the operator subgroup. 
All of the salaries for middle managers are above $70,000, so no test with the salary brackets can 
be performed. A somewhat weaker test is the cross-tabulation with Pearson or the likelihood 
ratio 𝜒𝜒2 test for independence of the margins. Unlike the tests based on ranks, the cross-
tabulation ignores ordering that exists between the categories of the grouped variable. 

Table 21. Nonparametric tests for grouped simulated data. 
Group Wilcoxon rank sum  

(two-sample Mann-Whitney test) 
Cross-tabulation  

𝑧𝑧-statistic Two-sided P-value Pearson 𝜒𝜒2 (d.f.) p-value 
Whole establishment 4.483 0.000 41.77 (5) 0.000 
Middle managers . . . . 
Professionals -0.287 0.774 0.480 (2) 0.787 
Technicians 0.545 0.586 5.026 (2) 0.081 
Operators 2.978 0.003 15.34 (2) 0.004 

Permutation tests were performed for some of the test statistics listed above, conditional on job 
groups. The permutation p-value for the cross-tabulation of salary ranges against gender 
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(Pearson 𝜒𝜒2 in the last two columns of Table 21) was 0.007, indicating a strong relationship 
between the two. The permutation p-value of Kruskal-Wallis ANOVA of ranks (𝜒𝜒2 statistics 
adjusted for ties) was 0.04, also indicating a strong relation. 

The interval regression model was fit to the simulated data.188 The results are reported in Table 
22 and should be compared with those in Table 14. The first complication encountered was that 
the maximum likelihood estimation did not converge when both job groups and occupational 
categories were used in the baseline model. As a result, it is unclear what the reference analysis 
with control variables should be. The model, however, successfully converged when 
demographic characteristics were added. The analysis with demographic design variables only 
produces a strong effect of gender as well as a weaker effect of Hispanic ethnicity. However, this 
effect is eliminated when either type of control variable is added to the model (the last two 
columns). Comparing the results of Table 22 to those in Table 14, we can observe that the 
confidence intervals are wider, which reflects the lesser amount of information available 
regarding the dependent variable: the exact measurements were replaced by far less accurate 
grouped values. 

Table 22. Interval regression with simulated data. 
 Job groups 

(9 
categories) 

Occupations 
(11 two-
digit 
categories) 

Design only Control + design 

White male   Base  
Female   -0.388 -0.099    
   [-0.606, -0.169]*** [-0.195,-0.002]*   
Black race   -0.170 0.181    
   [-0.531, 0.191] [-0.068,0.430]    
Hispanic   -0.362 -0.009    
   [-0.679, -0.046]* [-0.110,0.092]    
Asian race   0.046 0.019    
   [-0.177, 0.269] [-0.064,0.101]    
Black female   -0.213 -0.214    
   [-0.844, 0.419] [-0.510,0.082]    
Hispanic 
female 

  0.104 0.090    

   [-0.366, 0.574] [-0.059,0.239]    
Asian female   -0.015 0.030    
   [-0.405, 0.376] [-0.121,0.182]    
Var[residual] 0.0333 0.0522 0.3238 0.0274 
D.f. per 
parameter 

27.20 22.67 30.22 11.33 

Note: *, significant at 5% level; **, significant at 1% level; ***, significant at 0.1% level. 

Quantile regression with the grouped data was attempted, but the only convergent model was one 
with the demographic variables only, which cannot be used for practical enforcement purposes 
because it does not control for the relevant differences in job types and occupations. 

188 Wooldridge 2010. 
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Power analysis with respect to the gender effect 
To study the performance of the proposed test procedures when discrimination does exist, the 
wages of female employees of the simulated company were reduced by the same factor that 
varied from 1.0 (no discrimination) down to 0.80. The resulting distributions of pay levels in the 
modified data are given in Table 23, which is parallel to Table 20.  

Table 23. Distribution of salaries in the modified simulation data. 
 Number 

of males 
Number of females, by pay reduction factor 
1.00 0.95 0.90 0.85 0.80 

EEO-4 brackets       
16K–19.9K 0 0 0 1 3 8 
20K–24.9K 4 8 14 21 25 25 
25K–32.9K 13 28 23 15 12 8 
33K–42.9K 18 7 7 10 8 9 
43K–54.9K 27 7 10 7 6 6 
55K–69.9K 25 6 2 3 5 8 
70K+ 100 29 29 28 26 21 
Sample brackets*       
8K–17K 0 0 0 0 0 1 
17K–25K 4 8 14 22 28 32 
23K–32K 13 28 23 15 12 8 
33K–43K 18 7 7 10 8 9 
43K–57K 32 11 10 7 6 6 
57K–75K 23 3 3 5 10 9 
75K–105K 51 14 16 17 14 13 
105K–180K 38 12 11 8 6 6 
180K+ 8 2 1 1 1 1 

* Please note that these pay bands are used for illustrative purposes only. They are not a recommendation for using 
in the revised EEO-1 survey form. 

Repeating the previous analysis, Table 24 reports the results of nonparametric tests with the 
modified data, with the first column repeating Table 21. The p-values of Wilcoxon test are based 
on asymptotic approximation with the exact first two moments of the test statistic distribution. 
Even though the Pearson contingency table test does not take the ordinal nature of the data into 
account, it appears to have greater sensitivity to reductions in pay when EEOC brackets are used, 
whereas the Wilcoxon-Mann-Whitney test is more sensitive in the professionals group, which 
the EEOC brackets do not handle well. Because the suggested brackets provide a greater 
resolution at the higher levels of pay, the tests become feasible for managers. However, because 
of the relatively low counts in that job group, the test has no power to determine even the largest 
20 percent difference in pay between males and females. 
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Table 24. P-values of non-parametric tests with modified simulated data. 
 Pay reduction factor 

1.00 0.98 0.95 0.90 0.85 0.80 
EEOC brackets       
Wilcoxon-Mann-
Whitney test 

      

Middle managers . . . . . . 
Professionals .774 .774 .834 .785 .242 .001 
Technicians .586 .186 .010 .010 .003 .001 
Operators .003 .002 .000 .000 .000 .000 
x-tab / Cramer’s V       
Middle managers . . . . . . 
Professionals .787 .787 .240 .388 .363 .009 
Technicians .081 .070 .003 .003 .000 .000 
Operators .004 .003 .000 .000 .000 .000 
Sample brackets*       
Wilcoxon-Mann-
Whitney test 

      

Middle managers 0.189 0.189 0.678 0.678 0.678 0.678 
Professionals 0.709 0.709 0.925 0.195 0.002 0.001 
Technicians 0.055 0.055 0.014 0.014 0.003 0.001 
Operators 0.003 0.002 0.000 0.000 0.000 0.000 
x-tab / Cramer’s V       
Middle managers 0.399 0.399 0.858 0.858 0.858 0.858 
Professionals 0.724 0.724 0.779 0.648 0.036 0.017 
Technicians 0.042 0.042 0.004 0.004 0.000 0.000 
Operators 0.004 0.003 0.000 0.000 0.000 0.000 
* Please note that these pay bands are used for illustrative purposes only. They are not a recommendation for using 
in the revised EEO-1 survey form. 

Interval regression analysis is reported in Table 25 and is parallel to the Control + Design 
specification in Table 22. Job groups and occupation categories were used in all regressions 
except the analysis with the EEO-4 brackets and the smallest pay reduction factor of 0.80, for 
which the occupation categories were dropped to alleviate collinearity problems. The coefficient 
estimates from the models fit to the grouped data with the suggested brackets offer clear 
statistical efficiency advantages as shown by the much shorter confidence intervals. The sources 
of this efficiency gain are twofold: an increase in the number of categories from 8 to 10, and a 
better placement of the cutoff points according to the optimization algorithm. If the economy-
wide difference of 10 percent between males and females is indeed pure discrimination, as 
simulated in the data, it shows as strongly significant in the column for the pay reduction factor = 
0.9. 
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Table 25. Interval regression analysis with modified simulated data. 
 Pay reduction factor 

1.00 0.98 0.95 0.90 0.85 0.80 
EEO-4 
brackets 

      

White male Base Base Base Base Base Base 
Female -0.099 -0.112 -0.151 -0.244 -0.435 -0.621 
 [-0.195, -

0.002]* 
[-0.207, -
0.017]* 

[-0.251, -
0.050]** 

[-0.340, -
0.148]*** 

[-0.526, -
0.344]*** 

[-0.709, -
0.533]*** 

Black race 0.181 0.178 0.179 0.184 0.182 0.198 
 [-0.068, 

0.430] 
[-0.068, 
0.424] 

[-0.066, 
0.423] 

[-0.062, 
0.431] 

[-0.065, 
0.429] 

[-0.046, 
0.442] 

Hispanic -0.009 -0.014 -0.013 -0.004 -0.011 0.024 
 [-0.110, 

0.092] 
[-0.116, 
0.087] 

[-0.117, 
0.092] 

[-0.105, 
0.096] 

[-0.112, 
0.090] 

[-0.076, 
0.125] 

Asian race 0.019 0.014 0.013 0.012 0.012 0.002 
 [-0.064, 

0.101] 
[-0.069, 
0.097] 

[-0.071, 
0.098] 

[-0.074, 
0.098] 

[-0.073, 
0.097] 

[-0.097, 
0.102] 

Black female -0.214 -0.206 -0.177 -0.230 -0.185 -0.335 
 [-0.510, 

0.082] 
[-0.500, 
0.087] 

[-0.467, 
0.114] 

[-0.496, 
0.035] 

[-0.471, 
0.102] 

[-0.639, -
0.031]* 

Hispanic 
female 

0.090 0.046 0.059 0.074 0.048 -0.056 

 [-0.059, 
0.239] 

[-0.107, 
0.200] 

[-0.094, 
0.212] 

[-0.083, 
0.232] 

[-0.101, 
0.198] 

[-0.210, 
0.099] 

Asian female 0.030 0.043 -0.035 0.009 0.009 -0.060 
 [-0.121, 

0.182] 
[-0.108, 
0.194] 

[-0.192, 
0.121] 

[-0.139, 
0.157] 

[-0.139, 
0.157] 

[-0.229, 
0.109] 

D.f. per 
parameter 

11.33 11.83 11.33 11.83 11.83 16.00† 

Var[residual] 0.0274 0.0276 0.0296 0.0306 0.0312 0.0397 
Proposed 
brackets 

      

White male Base Base Base Base Base Base 
Female -0.067 -0.076 -0.106 -0.179 -0.365 -0.695 
 [-0.137, 

0.002] 
[-0.146, -
0.007]* 

[-0.181, -
0.030]** 

[-0.262, -
0.097]*** 

[-0.466, -
0.263]*** 

[-0.837, -
0.552]*** 

Black race 0.134 0.132 0.133 0.141 0.153 0.192 
 [-0.054, 

0.321] 
[-0.054, 
0.318] 

[-0.055, 
0.321] 

[-0.054, 
0.336] 

[-0.063, 
0.369] 

[-0.076, 
0.460] 

Hispanic -0.004 -0.008 -0.001 0.012 0.029 0.070 
 [-0.082, 

0.074] 
[-0.086, 
0.070] 

[-0.080, 
0.079] 

[-0.064, 
0.088] 

[-0.051, 
0.109] 

[-0.032, 
0.173] 

Asian race 0.013 0.010 0.010 0.010 0.013 0.016 
 [-0.037, 

0.064] 
[-0.040, 
0.061] 

[-0.040, 
0.061] 

[-0.042, 
0.062] 

[-0.042, 
0.068] 

[-0.052, 
0.084] 

Black female -0.197 -0.193 -0.168 -0.257 -0.300 -0.546 
 [-0.448, 

0.055] 
[-0.444, 
0.058] 

[-0.420, 
0.084] 

[-0.483, -
0.030]* 

[-0.637, 
0.038] 

[-1.065, -
0.027]* 
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Hispanic 
female 

0.064 0.017 0.021 0.026 -0.060 -0.206 

 [-0.057, 
0.186] 

[-0.111, 
0.146] 

[-0.107, 
0.149] 

[-0.117, 
0.170] 

[-0.242, 
0.122] 

[-0.514, 
0.102] 

Asian female 0.017 0.026 -0.042 -0.010 -0.033 -0.086 
 [-0.098, 

0.132] 
[-0.089, 
0.141] 

[-0.166, 
0.082] 

[-0.138, 
0.118] 

[-0.198, 
0.132] 

[-0.321, 
0.148] 

D.f. per 
parameter 

12.36 12.36 12.36 12.36 12.36 12.36 

Var[residual] 0.0189 0.0190 0.0217 0.0249 0.0386 0.0778 
Note: *, significant at 5% level; **, significant at 1% level; ***, significant at 0.1% level. 
† Occupation categories are omitted because of a multicollinearity problem. 

Summary 
This section of the report outlined a variety of statistical approaches that can be used to detect 
differences between groups, such as those defined by the categories protected by EEOC: race, 
ethnicity, religion, gender, pregnancy status, national origin, age, disability, and genetic 
information. As these approaches were applied to realistic pay data, their strengths and 
weaknesses were demonstrated. 

The following recommendations can be given. 

1. For the issues of robustness to the underlying pay distributions, nonparametric tests, 
permutation tests, or tests based on the bootstrap confidence intervals are preferred to the 
parametric tests. The full regression approach, although conceptually appealing for the best 
control over concomitant variables, may not be feasible in practice, especially when only the 
data by pay bands within demographic groups are available. The chosen statistic must 
operate at a sufficiently detailed level of control variables, such as occupations and job 
categories, to avoid false positives caused by differential employment of different 
demographic groups into these categories. (EEOC assesses patterns of employment in 
another program.) The most appropriate technique that combines robustness of 
nonparametric tests with reasonably accurate control over demographic groups is conditional 
permutation. In this approach, permutation (either of the protected category labels, or the 
earnings) is applied within each of the control groups (job groups) to obtain the sampling 
distribution of the test statistic that incorporates the expected differences in levels of pay 
between groups while controlling for the expected differences in demographic composition 
of these gropus. One of the greatest strengths of the permutation approach is that it can be 
applied to any test statistic. The “Examples” section above demonstrated the use of Mann-
Whitney test for grouped data and comparison of two groups (e.g., gender) and the use of 
Kruskal-Wallis test for more than two  groups (e.g., race). These tests are the most 
appropriate for an initial check for the establishment as a whole. Taking job groups into 
account can be performed by conditionally permuting the test statistic of the overall Mann-
Whitney or Kruskal-Wallis test within job categories and then further investigating 
companies and establishments with low p-values. Alternatively, the test results can be 
reported within each job group; however this latter approach results in losses of power due to 
lower sample sizes in job groups, and problems with the control of type I error (significance) 
due to multiple testing. 
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2. The issue of calibrating the error rates (power versus significance level) needs to be 
addressed ethically, in a way that balances the operational costs of detecting discrimination 
with the need to avoid false positives. Setting higher significance levels would improve the 
detection of discrimination but would also increase the number of false positives, leading to 
unnecessary investigations and eventually increasing operational costs of EEOC enforcement 
programs. Looking into the error rates across the sizes of companies may also be necessary, 
because for a given effect size, larger companies will be more likely to come under scrutiny. 
A three-way balancing of the effect sizes, significance levels, and power of the chosen test 
will be required to fine-tune the procedure in a way that is compatible with the mission of 
EEOC while keeping the whole operation manageable. 

3. Operationally, a dashboard can be created that would relate the nominal results of statistical 
tests (that is, test statistics or their p-values) to those encountered in the location and the 
industry. On such a dashboard, the EEOC investigator would see technical information such 
as the values of the main statistics used to describe the establishment, and its relation to the 
same statistic encountered in other establishments, which could report statistics of interest as 
shown in Figure 11. 

4. Because pay data are to be collected by salary brackets and hours worked, the pay bands 
would need to be carefully designed to balance usefulness of data with response burden. The 
brackets that EEO-4 currently uses may not be appropriate given that pay structure and levels 
in the economy as a whole are different from those in state and local governments. It is 
recommended that EEOC follow the methodology followed by OES (and outlined in earlier 
sections) to establish appropriate salary brackets.  
 
The number of salary brackets can also be reconsidered to balance the usability of the data 
and the response burden. A greater number of brackets (for example, 10 or 12 compared with 
the 8 salary ranges in the current EEO-4 instrument) will provide more accurate data that 
would correspondingly allow more detailed analysis. However, the collection of these more 
detailed data will proportionately increase the response burden. Producing optimal brackets 
remains a computational challenge. This report only provides a partial solution based on a 
small subsample of the existing rich CPS data. 
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This establishment Industry Location 
Protected 
category 

Test 
statistic 

Value Granularity Percentile Count Granularity Percentile Count 

         
Gender Mann-

Whitney-
Wilcoxon 
z 

1.57 2-digit 
NAICS 

Highest 
10.5% 

Highest 
113/1078 

State Highest 
1.8% 

Highest 
280/15702 

3-digit 
NAICS 

Highest 
26.9% 

21/78 MSA Highest 
7.2% 

Highest 
151/2083  

6-digit 
NAICS 

* 2/5 ZIP Highest 
16.8% 

Highest 
65/388 

Cramer’s 
V 

0.236 2-digit 
NAICS 

Highest 
15.6% 

Highest 
169/1078 

State Highest 
5.1% 

Highest 
799/15702 

3-digit 
NAICS 

Highest 
24.4% 

19/78 MSA Highest 
8.3% 

Highest 
173/2083  

6-digit 
NAICS 

* 2/5 ZIP Highest 
12.6% 

Highest 
49/388 

 

Figure 19. A prototype dashboard for a hypothetical establishment. 
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Section III: Burden Cost Estimates for EEOC and Its Respondents 
This section of the report addresses the burden costs for EEOC and its respondents if 
compensation data were collected.  

Burden Costs for EEOC 
With the collection of compensation data, EEOC will experience increased demands on both its 
information technology (IT) infrastructure and the ORIP staff who process the surveys. These 
one-time and ongoing burden costs are presented in this section. Costs were estimated by talking 
to both the survey group at EEOC and the staff responsible for the information technology (IT) 
infrastructure. Burden cost estimates include estimated costs for developing and implementing 
the systems for collecting compensation data, the hardware costs, the security concerns, and time 
for ORIP staff to develop the business logic for the data validation and edit checks. Both one-
time and ongoing costs were estimated. For one-time costs, the charges were further divided into 
two categories: costs for developing the system and time spent in writing the SAS program and 
developing edit checks.  

One-Time Costs 
If EEOC were to proceed to collect compensation data from employers, the online systems for 
EEO-1, EEO-4, and EEO-5 would need to be modified to enable this data collection. It is 
expected that there would be a one-time increase on the workload of ORIP staff to develop the 
logic and validation checks that need to be included in the online system before the report can be 
certified. In addition, there would be a burden on the survey staff to develop the SAS programs 
to validate and verify the data. One-time costs were estimated for developing the three systems 
and a second estimate was prepared for the increase in labor hours for data edits, validation, and 
analysis.   

Estimated One-Time Costs for Developing Online Systems 
The specific tasks included in estimating system development costs are: 

• Time spent to develop the logic to verify the data’s accuracy; 
• Programming and testing the online systems to collect compensation data; and 
• Hardware upgrades necessary  

The following Table 26 shows the estimated one-time cost of developing the three EEOC 
applications to collect compensation data. To estimate some of these costs, mean hourly wages 
for staff anticipated to work on the development and security administration side were collected 
from BLS’ yearly OES for the 2014 reporting year.189 Hourly estimations were compiled by 
speaking with subject-matter experts about the respective job functions, using standard project 
management methods for burden estimation, using the program evaluation and review technique, 
and referencing experts in the field of project management.190,191 

189 U.S. Bureau of Labor Statistics. n.d. “May 2014 National Occupational Employment and Wage Estimates: 
United States.” Available at http://www.bls.gov/oes/current/oes_nat.htm. 
190 Ahmed, S. 2011. “How Long Does Software Development Really Take?” Project Management in Practice 
(blog), 18 March. Available at http://prince2msp.com/2011/03/18/how-long-does-software-development-really-
take/. 
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Table 26. Costs for developing the systems 
Survey Type Estimated Cost 

EEO-1 $175,000 
EEO-4 $75,000 
EEO-5 $60,000 

  Total $310,000 

The current computing platform consists of three Blade web servers connected to a Cisco 
Content Switching Module, one DNS server for internal use, one Proxy Server for Windows with 
SSL hardware acceleration, one Windows server with Oracle 9i, and an Oracle 9i database on the 
mainframe. The network and servers have sufficient bandwidth and computing power to support 
several hundred simultaneous users through SSL-encrypted connections. To balance the 
increased load expected by the addition of compensation data to the EEO-1, EEO-4, and EEO-5 
surveys, an additional 10e blade server is recommended, but not necessary.  

The IBM mainframe database will need to double in size to store and retrieve the compensation 
data for the EEO-1, EEO-4 and EEO-5 surveys. These costs are not going to be much burden on 
EEOC. 

Estimated One-Time Costs for Data Validation and Data Analysis 
ORIP will face one-time costs to develop the algorithm to validate data checks for the three data 
collection systems. Tasks would include developing the business logic for the new systems, the 
types of edit checks that need to be built into the system, and testing the system. ORIP staff 
participated in a survey to provide increased burden that would be imposed on their staff due to 
this new reporting requirement. Table 27 provides this anticipated increased burden. 

Table 27. One-time costs for developing data validation 
Survey Type Estimated Increased Time Estimates 

EEO-1 0.7 FTE of staff time 
EEO-4 0.2 FTE of staff time 
EEO-5 0.1 FTE of staff time 

  Total 1.0 FTE increased staff time 

In addition, there would be the need for a SAS programmer to develop and write the SAS 
program to verify the data once it is collected. It is anticipated that a 0.5 FTE statistician would 
be needed to develop these programs.  

191 Wideman, M. 2001. “Project Management: Simple Answers to Simple Questions.” Max’s Project Management 
Wisdom (blog), September. Available at http://www.maxwideman.com/papers/questions/answers.htm. 
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Ongoing Costs 

Estimated Ongoing Costs for Developing Online Systems 

The ongoing costs associated with this project include the annual costs of maintaining the 
upgraded server and database architecture to support the increase in collected data. The 
additional 10 gigabytes of storage space for the IBM mainframe database is not anticipated to 
cause a statistically significant increase in overall IT yearly costs and is not considered for the 
purposes of this burden estimation.  

Adding a server of the same specifications as the existing server would result in an additional 
yearly cost of less than $3,000 for every year the additional server is in use.  

The average yearly IT expenditure for maintaining the software used for the EEO-1, EEO-4, and 
EEO-5 surveys is not expected to change with the addition of the compensation collection 
portions because thorough testing and quality assurance procedures before the rollout of the 
changes will ensure that most mistakes and errors are caught and fixed before the final 
production release of the new forms. Any software issues beyond the rollout date are not 
expected to impact IT person-hours. 
Estimated Ongoing Costs for Data Validation and Data Analysis 

No additional costs for data validation or running the reports will be imposed on the ORIP staff. 
Once the data validations are built into the data collection system, to verify the collected data is 
not anticipated to have an increased burden. It is expected that the statistician at EEOC might 
spend an additional 10 percent of the time verifying the data.  

Ongoing costs will include a higher volume of help desk inquiries and an increase in survey data 
processing time because of the added data cleanup and analysis time. It is anticipated that one 
additional FTE call center support staff will be needed to respond to the increased queries. 

Burden on Respondents 
To understand the impact of the proposed changes on EEOC survey respondents, a representative 
sample was selected from all three surveys that included both large and small employers. 
Additional sampling criteria included the method of completing the survey (online, data upload, 
or paper survey). The selected respondents were contacted by phone and asked if they would 
agree to participate in the burden cost survey. The survey was emailed to those respondents who 
agreed to participate, and their responses were tabulated.  

The first part of the burden cost survey involved collecting information on the current cost of 
reporting. The second part involved collecting information on costs if compensation data were 
collected. The data from the respondents were tabulated and are presented below.  
EEO-1 

Several EEO-1 respondent firms were selected based on size and type of respondent. Almost all 
responses received did not include numerical data on burden costs. The following provides a 
summary of selected responses received: 
 
Responses from small firm who completes the report online: 

• The time to complete the new requirement will be almost double since we have to put in 
the data manually.  
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Responses from respondent who completes report by data upload: 
• There will be some one-time costs but then there should not be much impact. 
• I am more concerned with the time it will take for EEOC to approve the data as there is 

now going to be twice the data to approve. 
• We will need to work with our vendor to get the new query. Don’t see it as much of a 

problem as long as we know what to report and we don’t have to change dates of 
reporting period. 

As there was no quantitative data provided, it is not possible to provide estimates on the burden. 
However, in February 2012, EEOC held a two-day forum on modernization of the surveys.192 
Representatives from the EEO-1 respondents were also in attendance at this forum. One of the 
roundtable discussions was about the impact of collecting compensation data from the survey 
respondents. Though the forum presented the scenario of collecting mean salary data, some of 
the burden cost estimates are relevant. All EEO-1 respondents agreed that collecting additional 
race information would be cost-prohibitive since there would be a need to collect revised race 
definitions from all employees. However, for reporting compensation data, the average estimate 
increase was approximately 96 percent. The participants at the forum were unwilling to provide 
detailed cost estimates or provide more data on their burden costs citing confidentiality reasons.  

EEO-4 
Data was calculated for large filers (such as state governments) and for smaller filers such as 
local governments. Table 28 provides the estimated current costs and the cost for reporting 
compensation data. The cost estimates show a higher cost burden for larger employers or 
districts. For large EEO-4 respondents such as state governments, the average one-time burden 
cost would be $46,234 with annual costs going down to $27,202. The annual burden costs for the 
large employers are estimated to be a little higher than current costs. For smaller filers such as 
local governments, the one-time cost would be significantly less ($150) and the annual cost for 
reporting would remain about the same.  

Table 28. Burden costs for EEO-4 respondents 

EEO-4 Respondent Size 
Current 
Costs for 
Reporting 

Anticipated Cost for 
Reporting Compensation 
One-time 

Cost Annual Cost 

Large jurisdictions $21,217 $46,234 $27,202 
Small jurisdictions $428 $150 $426 

Please note that one large EEO-4 respondent was removed from the analysis. This respondent 
reported a significant decrease in the annual recurring costs for reporting compensation data. 
When asked for an explanation, it was explained that they were currently reporting data by 
entering it manually in the online system. However, they planned to upload all the data starting 
with the next survey cycle, which would significantly reduce their burden. Since this respondent 
was changing method of reporting, irrespective of the change in reporting requirements, the 
respondent’s responses were removed from the final analysis. 

192 Unpublished report from February 2012 Forum to Modernize EEO Data Collection. 
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EEO-5 
EEO-5 respondents were sampled by the method of filing their report. There were not enough 
responses received from EEO-5 respondents who file their report via data upload. However, of 
the small number who reported, they did not anticipate any significant recurring costs. They were 
also not able to report the one-time cost to prepare to meet this new requirement. For employers 
that use the online form, the average one-time burden cost would be $5,483. They expect the 
annual recurring cost to increase by approximately 30 percent from $1,146 to $1,484.  
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Section IV: System Enhancements 
The EEO-1, EEO-5, and EEO-4 are online data collection systems that allow respondents to 
submit data via an online form, upload data, and give directions on how to submit paper reports.  

The current survey systems use Oracle database on the back end. EEO-4 and EEO-5 use J2EE 
Spring framework while EEO-1 is mainly JSP-based. The EEO-1 application is old and has 
several issues. Each JSP file has its own header information and it does not use any 
framework/standard, and each page has its own code. This makes it a difficult system to 
maintain. EEO-4 and EEO-5 systems have the capability of auto validation of data uploads 
which allows for an efficient data transfer. Recent changes to the EEO-1 system added the 
capability to allow respondents to test their upload data prior to submission. However, several 
validation processes are manual and time consuming. 

A panel of experts in web technologies reviewed the existing systems to identify ways the data 
transfers can be modernized and improved. 193 The recommendations made were keeping in 
mind that adding compensation data would increase the burden on the respondents. The 
additional security concerns that would be raised by employers if compensation data collected 
were also taken into account. The volume of data collected would almost double and it is critical 
that the online systems be robust and efficient to meet this new demand. 

A review of the existing systems found that EEO-4 and EEO-5 data upload allows the 
respondent to view their uploaded files in “real time”. The data is validated and errors are 
displayed prior to submission. For EEO-1, the data is uploaded to a “test” database. Even though 
the respondents have the option to test their upload files and check for errors, not all validation 
checks are made at this point. A large number of validation and edit checks are manual and lead 
to delay in approval of the submitted data file. Survey respondents have to wait for EEOC 
support staff to approve the data. If there are errors, it takes a few weeks for EEOC to transmit 
this information to the respondent. It is recommended that EEO-1 system data upload 
functionality be updated. It should include real-time data validation and testing functionality. The 
respondents should be given real time access to correct and fix errors. In addition, most 
organizational changes that impact EEO-1 data collection are manual edits. In particular, merger 
and acquisition increase EEOC staff workload and slows down the data collection process. It is 
recommended that the steps and process for approving merger and acquisition are defined further 
and documented. The process should be automated to the maximum extent possible.  

All three systems currently allow text and CSV file uploads. It is recommended that EEOC 
consider using the latest platform independent lightweight data-interchange format, JSON 
(JavaScript Object Notation). This is text-based format with name/value pairs. JSON has many 
advantages over XML and other popular technologies. For example, JSON is smaller than 
corresponding XML files and also faster to process. In addition, transferring data using JSON is 
much easier because the data is stored in arrays and records while XML stores data in trees. Both 
have their advantages, but data transfers are much easier when the data is stored in a structure 
that is familiar to object-oriented languages.  

193 V. Sanku, certified Java programmer; J. Thoppil, FISMA security expert; H. Reddy, a certified database 
programmer; and R. Bansal, an information technology expert specifically in web-based technologies. 
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Another advantage of using JSON is that it will allow the use of web-based services such as 
WorkDay to transmit files directly to the EEO-1 systems reducing the burden on respondents to 
run programs/queries to create files compatible for data upload. 

All EEOC surveys initiate the data collection process by sending a hard copy letter to 
respondents. The hard copy contains a link to the survey and at least the login id (starting from 
2015, EEO-1 survey letters will not have the password in the letter). In order to increase security 
and make the process more efficient, it is recommended that email be used to send the login id 
and the link to the survey. Once compensation data is collected, it will be imperative to assure 
respondents, especially the private employers, that data collection is secure. The email method is 
more user friendly and secure, as compared to a physical letter. The hard copy should be sent to 
users who either do not have a valid email id or in instances where the registered email bounces 
back.  

Currently minimal address validation is done for EEO-1 and other surveys. It is recommended 
that the organization address should be validated and a geocoded address should be stored in the 
database. The geocoding will enable spatial and location-based analysis of data. The geocoding 
will also allow map-based user interfaces and reports. 

The suggested recommendations for system enhancements will make the data collection more 
efficient and robust and also ensure data security. The one-time burden costs on EEOC to 
implement these changes are balanced by the reduced annual burden on the ORIP staff to 
perform manual data edits and validation checks as well as reduced burden in responding to 
emails and phone calls.  
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Section V: Conclusions 
This report provides recommendations to EEOC on the most appropriate definition of pay, unit 
of pay, and statistical tests to analyze compensation data for the purpose of identifying pay 
disparities and discriminatory practices. The report looks at different measures of compensation 
and identifies IRS’ W-2 definition of pay as most appropriate. The W-2 definition of total 
income, which includes supplemental compensation components, such as production and 
nonproduction bonuses, offers a more comprehensive picture of earnings data and may not create 
a measurable burden for most respondents. The report recommends collecting aggregate W-2 
compensation information for the 10 EEO-1 occupation categories into pay bands, which would 
allow computation of within-occupation variation, across-occupation variation, and overall 
variation. In addition to the compensation data, total hours worked by each group should also be 
collected to increase the value of the data and to account for pay differences due to variation in 
the number of hours worked.  

The pay bands would need to be carefully designed to balance usefulness of data with response 
burden. Determining the number of salary brackets and upper and lower bounds of each bracket 
is beyond the scope of this study. For purposes of this study and to illustrate the statistical 
methods, data from CPS was used to create 10 income ranges. The methodology followed is 
described in the report. The report also outlines the steps followed for the OES survey. It is, 
however, recommended that EEOC undertake a study to determine the actual bounds. However, 
if further research is not feasible due to budget constraints, an alternative would be to use the 
OES survey bounds. A large majority of the EEO-1 respondents are familiar with the bounds and 
as described in the report, BLS follows strict methodology in keeping the bounds updated. 

Sample forms for the three surveys, included in the Appendix, do not specify the bounds for the 
pay bands but are meant to be representative of how compensation data should be collected. 

The report also looked at different methods of analyzing the data. Simulated data provided by 
EEOC was used to provide illustrative examples of the proposed statistical methodology of use 
of Mann-Whitney test for grouped data and the use of Kruskal-Wallis test. An initial check for 
the establishment as a whole can be performed by conditionally permuting the test statistic of the 
overall Kruskal-Wallis test within job categories and then further investigating companies and 
establishments with low p-values. To account for the fact that individuals with different pay rates 
may end up in the same bin if they worked a different number of hours, such as when a more 
highly paid individual joined or left the company in midyear, the number of hours worked will 
be used. The report outlines methods for incorporating it in the analysis. 

The report also looks at survey design and addresses concerns of balancing power versus 
significance level in a way that balances the operational costs of detecting discrimination with 
the need to avoid false positives. Setting higher significance levels would improve the detection 
of discrimination but would also increase the number of false positives, leading to unnecessary 
investigations and eventually increasing operational costs of EEOC enforcement programs.  

We recommend that a dashboard be created that would relate the nominal results of statistical 
tests (that is, test statistics or their p-values) to those encountered in the location and the industry. 
On such a dashboard, the EEOC investigator would see technical information such as the values 
of the main statistics used to describe the establishment, and its relation to the same statistic 
encountered in other establishments.  
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With the collection of compensation data, EEOC will experience one-time and ongoing burden 
costs. Developing the three EEOC applications to collect compensation data will be a one-time 
cost. ORIP will face one-time costs to develop the algorithm to validate data checks. The 
ongoing costs associated with this project include the annual costs of maintaining the upgraded 
server. Adding a server of the same specifications as the existing server would result in an 
additional yearly cost of less than $3,000 for every year the additional server is in use.  

The burden on respondents was ascertained with the aid of a burden cost survey. A 
representative sample was selected from all three EEOC surveys that included both large and 
small employers and the survey was emailed to those respondents who agreed to participate. For 
EEO-1, the respondents did not provide any quantitative data, so it is not possible to provide 
estimates on the burden. For EEO-4, the cost estimates show a higher one-time cost burden for 
larger employers or districts, such as state governments, compared to smaller filers. There were 
not enough responses received from EEO-5 respondents who file their report via data upload. 
However, of the small number who reported, they did not anticipate any significant recurring 
costs. EEO-5 respondents who use the online form expect the annual cost to increase by 
approximately 30 percent from $1,146 to $1,484.  

A panel of experts evaluated the current data collection systems and provided recommendations 
to improve the data transfer process. The current data collection systems for EEO-1, EEO-5, and 
EEO-4 allow respondents to submit data via an online form or upload data. It is recommended 
that EEOC consider using the latest platform-independent lightweight data-interchange format, 
JSON (JavaScript Object Notation), which has many advantages over XML and other popular 
technologies. Additionally, the JSP-based EEO-1 system should be re-designed using J2EE 
framework and the data upload functionality should be updated to include real-time data 
validation and testing functionality.  
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Appendix A: Background Material on Piecewise 
Quadratic Density Estimation 
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The Piecewise Quadratic Density Estimation (PQDE) method offers an alternative to using 
assumed mean methods for deriving reliable estimates for interval censored data. PQDE is a 
density estimator derived from a single histogram and is defined as “a piecemeal quadratic 
polynomial with adjustments made at the right and left extremes of the domain.”  O’Malley notes 
that the PQDE method is based on the assumption that the “area in each interval of a frequency 
histogram is preserved” and that “the curve should be somewhat smooth with no large spikes or 
jumps between intervals.” These assumptions while not essential for a density estimator, allow 
for one that is simple and potentially well suited for large samples, such as the OES data.   

OES estimates are derived from a large sample of over 1.2 million establishments. Wage 
information is collected in 12 non-overlapping wage rate intervals and the means and variances 
for the 12 intervals are calculated using point data from the National Compensation Survey 
(NCS). Hesley and Duff apply O’Malley’s PQDE to OES data as an alternative to the current 
NCS method. When using PQDE, “employment within a wage interval is represented by the area 
under a curve drawn to show the estimated relationship between employment and hourly wage 
rate within the wage interval.”  Hesley and Duff start with plotting weighted proportions in each 
interval as a histogram of wage intervals “where the height of the histogram in each interval 
represents the employment in that interval.” The area in each of the intervals and the interval 
boundaries are used to derive a quadratic equation to represent the relationship between wage 
and employment in each interval. This procedure applies only to “center intervals where adjacent 
histogram bars are present on the right and left.” To maintain continuity, if either adjacent 
interval is zero the boundary (the average of the heights of the adjacent histogram bars) values 
are set to zero.  

When intervals with small proportion of employment are in between or adjacent to intervals with 
very large proportion of employment, it is possible for parabolas in those intervals with small 
proportions to fall below zero. In such a case, the parabola is “replaced by one or more lines 
which drop from the larger interval to zero in a way that preserves area.” To handle the end 
intervals in OES, where the beginning Interval A is closed bound and the uppermost Interval L is 
unbounded, O’Malley suggests the area under the Interval A should be represented with a linear 
polynomial. However, in applying the PQDE method to OES data, Hesley and Duff find that a 
straight line estimator is not appropriate for the lowermost Interval A. The interval is not suited 
for PQDE since it does not have another interval below to gather information from. Interval L is 
particularly difficult as there is little information regarding the location and spread of the data 
and this interval can have a large impact on the mean and higher percentiles. O’Malley notes that 
the “extent of this problem must be limited by raising the lower bound of the last interval until it 
is large enough that only a small tail remains in the rightmost interval.” An exponential 
distribution can then be used to describe the tail.  

Hesley and Duff conclude that the PQDE method shows “promising results” and adequately 
represents intervals B through K at the national major occupation group level of data. They also 
note that further research is required on applying PQDE to Interval A.  

An exhaustive literature search did not show any applicable examples of the PQDE method 
being utilized for large data samples, but this is an area that EEOC researchers can explore 
further, especially if the application of this method for sparse cells is possible. This type of 
research, however, is outside the scope of this study. 

 

A-2 
 



 

Appendix B: Sample EEO-1 Form 
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● Equal Employment Opportunity Commission   
● Office of Federal Contract Compliance Programs (Labor)

a.
b.
c.
◦
d.

County State ZIP code

f.

City or Town State ZIP code
2. Establishment for which this report is fi led (omit if same as label)
a. Name of establishment

2. Is your company affi l iated through common ownership and/or centralized management with other entities in an 
enterprise with a total employment of 100 or more?

NOTE: If the answer is yes to questions 1, 2, or 3, complete the entire form, otherwise skip to Section G.

□ Yes      □ No

□ Yes      □ No

□ Yes      □ No

If the response to question C-3 is yes, please enter your Dun and Bradstreet identification number (if you have one):
   │  │  │  │  │  │  │  │  │  │    

3. Does the company or any of its establishments (a) have 50 or more employees AND (b) is not exempt as provided 
by 41  CFR 60-1.5, AND either (1) is a prime government contractor or first-tier subcontractor, and has a contract, 
subcontract, or purchase order amounting to $50,000 or more, or (2) serves as a depository of Government funds in 
any amount or is a financial institution which is an issuing and paying agent for U.S. Savings Bonds and Savings 
Notes?

1. Does the entire company have at least 1 00 employees in the payroll  period for which you are reporting?

Address (Number and street) City or Town e.

b. Employer identification No. (IRS 9-DIGIT TAX NUMBER)   │  │  │  │  │  │  │  │ 
c. Was an EEO-1  report fi led for this establishment last year?   □ Yes      □ No

Section C- EMPLOYERS WHO ARE REQUIRED TO FILE (To be answered by all employers)

a. Name of parent company (owns or controls establishment in item 2) omit if same as label
Address (Number and street)

Section A-TYPE OF REPORT                                                                                                                                                                                                       Refer to instructions for number 
and types of reports to be filed

(1)  □ Single-establishment Employer Report

1. Indicate by marking in the appropriate box the type of reporting unit for which this copy of the form is submitted (MARK ONLY ONE BOX). 

Multi-establishment Employer:                                                                  
(2) □  Consolidation Report (Required)                                        
(3) □  Headquarters Unit Report (Required)                       
(4) □  Individual Establishment Report (submit one for each establishment with 50 or more 
employees)                                             (5) □  Special Report

2. Total number of reports being fi led by this Company (Answer on Consolidated Report only) _______________

OFFICE USE ONLY

O.M.B.No.
FORM APPROVAL: 

EQUAL EMPLOYMENT OPPORTUNITY                  EMPLOYER 
INFORMATION REPORT EEO-1

Standard Form 100
REV. MM/YYYY

Section B-COMPANY IDENTIFICATION   (T o be answered by all employers)                                          
1. Parent Company

Joint Reporting
Committee                              

B-1 
 



 

 

 

  

B-2 
 



 

                 Male                             Female
 Male Female White Black or 

African 
American

Native 
Hawaiian 
or Pacific 
Islander

Asian Native 
American 
or Alaska 
Native

Two or 
More 
races

White Black or 
African 
American

Native 
Hawaiian 
or Pacific 
Islander

Asian Native 
American 
or Alaska 
Native

Two or 
More 
races

Total Col 
A-N

A B C D E F G H I J K L M N O
1. L1-L2
2. L3-L4
3. L5-L6
4. L7-L8
5. L9-L10
6. L11-L12
7. L13-L14
8. L15-L16
9. L1-L2
10. L3-L4
11. L5-L6
12. L7-L8
13. L9-L10
14. L11-L12
15. L13-L14
16. L15-L16
17. L1-L2
18. L3-L4
19. L5-L6
20. L7-L8
21. L9-L10
22. L11-L12
23. L13-L14
24. L15-L16
25. L1-L2
26. L3-L4
27. L5-L6
28. L7-L8
29. L9-L10
30. L11-L12
31. L13-L14
32.  L15-L16

Hispanic or Latino

Employment at this establishment- Report all permanent full- and part-time employees including apprentices and on-the-job trainees unless specifically excluded as set forth in the instructions. Enter the 
appropriate figures on all lines and in all columns. Blank spaces will be considered as zeros.

Number of Employees  (Report employees in only one category)

Race/Ethnicity
              Non/Hispanic or Latino

Executive/Senior Level 
Officials and Managers                                     

1.1

First/ Mid-Level Officials 
and Managers                                               

1.2

Job Categories
Annual Salary in 

Thousands

                                                                                                                                                 Section D-EMPLOYMENT DATA                                                                                                                     SF 100 - Page 2                                                                                                                                                                                                                                                                         

Professionals                                            
2

Technicians                                              
3
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33. L1-L2
34. L3-L4
35. L5-L6
36. L7-L8
37. L9-L10
38. L11-L12
39. L13-L14
40.  L15-L16
41. L1-L2
42. L3-L4
43. L5-L6
44. L7-L8
45. L9-L10
46. L11-L12
47. L13-L14
48.  L15-L16
49. L1-L2
50. L3-L4
51. L5-L6
52. L7-L8
53. L9-L10
54. L11-L12
55. L13-L14
56. L15-L16
57. L1-L2
58. L3-L4
59. L5-L6
60. L7-L8
61. L9-L10
62. L11-L12
63. L13-L14
64. L15-L16
65. L1-L2
66.L3-L4
67. L5-L6
68. L7-L8
69. L9-L10
70. L11-L12
71. L13-L14
72.  L15-L16
73. L1-L2
74. L3-L4
75. L5-L6
76. L7-L8
77. L9-L10
78. L11-L12
79. L13-L14
80.  L15-L16

Total    81.
PREVIOUS YEAR TOTAL    82.

Administrative  Support                  
Workers                                                       

5                                                                   

Operatives                                                
7

Laborers and Helpers                          
8

Service Workers                                    
9

Sales Workers                                           
4

Craft Workers                                           
6
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                 Male                             Female
 Male Female White Black or 

African 
American

Native 
Hawaiian 
or Pacific 
Islander

Asian Native 
American 
or Alaska 
Native

Two or 
More 
races

White Black or 
African 
American

Native 
Hawaiian 
or Pacific 
Islander

Asian Native 
American 
or Alaska 
Native

Two or 
More 
races

Total Col 
A-N

A B C D E F G H I J K L M N O
1. L1-L2
2. L3-L4
3. L5-L6
4. L7-L8
5. L9-L10
6. L11-L12
7. L13-L14
8. L15-L16
9. L1-L2
10. L3-L4
11. L5-L6
12. L7-L8
13. L9-L10
14. L11-L12
15. L13-L14
16. L15-L16
17. L1-L2
18. L3-L4
19. L5-L6
20. L7-L8
21. L9-L10
22. L11-L12
23. L13-L14
24. L15-L16
25. L1-L2
26. L3-L4
27. L5-L6
28. L7-L8
29. L9-L10
30. L11-L12
31. L13-L14
32.  L15-L16

                                                                                                                                                 Section D-EMPLOYMENT DATA                                                                                                                     SF 100 - Page 2                                                                                                                                                                                                                                                                         

Employment at this establishment- Report all permanent full- and part-time employees including apprentices and on-the-job trainees unless specifically excluded as set forth in the instructions. 
Enter the appropriate figures on all lines and in all columns. Blank spaces will be considered as zeros.

Job Categories
Annual Salary in 

Thousands

Non/Hispanic or Latino
Hispanic or Latino

For each cell provide the TOTAL Number of Hours worked in last year

Executive/Senior 
Level Officials and 

Managers                                     
1.1

First/ Mid-Level 
Officials and 

Managers                                               
1.2

Professionals                                            
2

Technicians                                              
3

Race/Ethnicity
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33. L1-L2
34. L3-L4
35. L5-L6
36. L7-L8
37. L9-L10
38. L11-L12
39. L13-L14
40.  L15-L16
41. L1-L2
42. L3-L4
43. L5-L6
44. L7-L8
45. L9-L10
46. L11-L12
47. L13-L14
48.  L15-L16
49. L1-L2
50. L3-L4
51. L5-L6
52. L7-L8
53. L9-L10
54. L11-L12
55. L13-L14
56. L15-L16
57. L1-L2
58. L3-L4
59. L5-L6
60. L7-L8
61. L9-L10
62. L11-L12
63. L13-L14
64. L15-L16
65. L1-L2
66.L3-L4
67. L5-L6
68. L7-L8
69. L9-L10
70. L11-L12
71. L13-L14
72.  L15-L16

Craft Workers                                           
6

Administrative  
Support                  
Workers                                                       

5                                                                   

Sales Workers                                           
4

Operatives                                                
7

Laborers and 
Helpers                          

8

B-6 
 



 
 

73. L1-L2
74. L3-L4
75. L5-L6
76. L7-L8
77. L9-L10
78. L11-L12
79. L13-L14
80.  L15-L16

Check           1                      □
one               2                      □

Service Workers                                    
9

Total    81.

Name of person to contact regarding this report

PREVIOUS YEAR TOTAL    82.

Title Address (Number and Street)

City and State Zip Code Telephone No. (including Area Code abd Extenstion Email Address

Date

1. Date(s) of payroll period used: ________________________________________________________(Omit on the Consolidate Report)

Section E -ESTABLISHMENT INFORMATION (Omit on the Consolidate Report)

All reports are accurate and were prepared in accordance with instructions. (Check on 
This report is accurate and was prepared in accordance with the instructions.

Name of Certifying Official Title Signature

1. What is the major activity of this establishment? (Be specific, i.e., manufacturing steel castings, retail grocer, wholesale plumbing supplies, title insurance, etc.
Include the specific type of product or type of service provided, as well as the principal business or industrial activity.)

Section F- REMARKS
Use this item to give any identification data appearing on the last EE0-1 report which differs from that given above, explain major changes in composition of reporting units and other pertinent 
information.

Section G- CERTIFICATION
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Appendix C: Sample EEO-4 Form 
 

  

C-1 
 



 

EEOC USE 
ONLY 

A

B

2. STREETS AND HIGHWAYS. Maintenance, repair, 
construction and administration of streets, alleys, 
sidewalks, roads, highways and bridges.

10. COMMUNITY DEVELOPMENT. Planning, 
zoning, land development, open space, 
beautification, preservation.

3. PUBLIC WELFARE. Maintenance of homes and
other institutions for the needy; administration of
public assistance. (Hospitals and sanatoriums 
should be reported as item7.)

11. CORRECTIONS. Jails, reformatories, 
detention homes, halfway houses, prisons, 
parole and probation activities.

1.Financial Administration. Tax billing and
collection, budgeting, purchasing, central
accounting and similar financial administration
carried on by a treasurer's, auditor's or
comptroller's office and
GENERAL CONTROL. Duties usually performed by
boards of supervisors or commissioners, central
administration offices and agencies, central
personnel or planning agencies, all judicial offices
and employees (judges, magistrates, bailiffs, etc.)

9. HOUSING. Code enforcement, low rent 
public housing, fair housing ordinance 
enforcement, housing for elderly, housing 
rehabilitation, rent control.

    A. TYPE OF GOVERNMENT (Check one box only)

□  1. State                 □  2. County                 □  3. City                □  4. Township                □  5. Special District                                                                                                                                                                                                                  
□  6. Other (Specify)______________________________________________________________________________

 B. IDENTIFICATION
                         1. NAME OF POLITICAL JURISDICTION (If same as label, skip to Item C)

8. HEALTH. Provision of public health services, 
outpatient clinics, visiting nurses, food and 
sanitary inspections, mental health, alcohol 
rehabilitation service, etc.

State/ZIPCountyCity/Town2. Address--Number and Street

C. FUNCTION                                                                                                               

(Check one box to indicate the function(s) for which this form is being submitted. Data should be reported for all 
departments and agencies in your government covered by the function(s) indicated. If you cannot supply the data for 
every agency within the function(s) attach a list showing name and address of agencies whose data are not included.)

EQUAL EMPLOYMENT OPPORTUNITY COMMISSION
STATE AND LOCAL GOVERNMENT INFORMATION (EEO-4) 

EXCLUDE SCHOOL SYSTEMS AND EDUCATIONAL INSTITUTIONS
(Read attached instructions prior to completing this form)

APPROVED BY                                  OMB                                                        
3046-0008                                                 

EXPIRES                         5/31/2018
MAIL COMPLETED

FORM TO: 
EEO-4 Reporting Center
PO Box 8127 
Reston VA 20195

            DO NOT ALTER INFORMATION PRINTED IN THIS BOX
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15. OTHER (Specify on Page Four)

7. HOSPITALS AND SANATORIUMS. Operation and
maintenance of institutions for inpatient medical 
care.

13. SANITATION AND SEWAGE. Street 
cleaning, garbage and refuse collection and 
disposal. Provision, maintenance and 
operation of sanitary and storm sewer systems 
and sewage disposal plants.

5. FIRE PROTECTION. Duties of the uniformed fire
force and clerical employees. (Report any forest 
fire protection activities as item 6.)

6. NATURAL RESOURCES. Agriculture, forestry, 
forest
fire protection, irrigation drainage, flood control, 
etc., and
PARKS AND RECREATION. Provision, maintenance
and operation of parks, playgrounds, swimming 
pools, auditoriums, museums, marinas, zoos, etc.

14. EMPLOYMENT SECURITY STATE
GOVERNMENTS ONLY

12. UTILITIES AND TRANSPORTATION. 
Includes water supply, electric power, transit, 
gas, airports, water transportation and 
terminals.

4. POLICE PROTECTION. Duties of a police
department sheriff's, constable's, coroner's office, 
etc., including technical and clerical employees  
engaged in police activities.
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                 Male                             Female

 Male Female White

Black or 
African 
American Asian

Native 
Hawaiian 
or Other 
Pacific 
Islander

American 
Indian or 
Alaska 
Native

Two or 
More 
races White

Black or 
African 
American Asian

Native 
Hawaiian 
or Other 
Pacific 
Islander

American 
Indian or 
Alaska 
Native

Two or 
More 
races Total Col A-N

A B C D E F G H I J K L M N O

1. $0.1-15.9
2. 16.0-19.9
3. 20.0-24.9
4. 25.0-32.9
5. 33.0-42.9
6. 43.0-54.9
7. 55.0-69.9
8. 70.0 PLUS
9. $0.1-15.9 
10. 16.0-19.9 
11. 20.0-24.9 
12. 25.0-32.9 
13. 33.0-42.9 
14. 43.0-54.9 
15. 55.0-69.9 
16. 70.0 PLUS
17. $0.1-15.9 
18. 16.0-19.9 
19. 20.0-24.9 
20. 25.0-32.9 
21. 33.0-42.9 
22. 43.0-54.9 
23. 55.0-69.9 
24. 70.0 PLUS

25. $0.1-15.9 
26. 16.0-19.9 
27. 20.0-24.9 
28. 25.0-32.9 
29. 33.0-42.9 
30. 43.0-54.9 
31. 55.0-69.9 
32. 70.0 PLUS

33. $0.1-15.9 
34. 16.0-19.9 
35. 20.0-24.9 
36. 25.0-32.9 
37. 33.0-42.9 
38. 43.0-54.9 
39. 55.0-69.9 
40. 70.0 PLUS

41. $0.1-15.9 
42. 16.0-19.9 
43. 20.0-24.9 
44. 25.0-32.9 
45. 33.0-42.9 
46. 43.0-54.9 
47. 55.0-69.9 
48. 70.0 PLUS

Administrative 
Support

Annual Salary 
(in thousands 

000)
Job Categories 

D. EMPLOYMENT DATA AS OF JUNE 30 

(Do not include elected/appointed officials. Blanks will be counted as zero)
                                                1. FULLTIME EMPLOYEES (Temporary employees are not included)

    Hispanic or Latino
Race/Ethnicity

              Non/Hispanic or Latino

Officials 
Administrators

Professionals

Technicians

Protective 
Service

Para-
Professionals
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                 Male                             Female

 Male Female White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races

Total Col A-
N

A B C D E F G H I J K L M N O
49. $0.1-15.9 
50. 16.0-19.9 
51. 20.0-24.9 
52. 25.0-32.9 
53. 33.0-42.9 
54. 43.0-54.9 
55. 55.0-69.9 
56. 70.0 PLUS
57. $0.1-15.9 
58. 16.0-19.9 
59. 20.0-24.9 
60. 25.0-32.9 
61. 33.0-42.9 
62. 43.0-54.9 
63. 55.0-69.9 
64. 70.0 PLUS

72. SKILLED CRAFT 
73. SERVICE/MAINTENANCE

74. TOTAL OTHER THAN FULL 
TIME (LINES 66 – 73)

67. PROFESSIONALS 
68. TECHNICIANS 
69. PROTECTIVE SERVICE
70. PARAPROFESSIONAL 
71. ADMIN. SUPPORT 

D. EMPLOYMENT DATA AS OF JUNE 30 (Cont.)
(Do not include elected/appointed officials. Blanks will be counted as zero)

Skilled Craft

Service 
Maintenance

65. TOTAL FULL TIME 

(LINES 1 – 64)

66. OFFICIALS/ADMIN 

2. OTHER THAN FULLTIME EMPLOYEES (Including temporary employees

                                                1. FULLTIME EMPLOYEES (Temporary employees are not included)

Categories 
Annual Salary 
(in thousands 

000)

    Hispanic or Latino
Race/Ethnicity

              Non/Hispanic or Latino

3. NEW HIRES DURING FISCAL YEAR Permanent full time only JULY 1 – JUNE 30

75. OFFICIALS/ADMIN 
76. PROFESSIONALS 
77. TECHNICIANS 
78. PROTECTIVE SERVICE
79. PARAPROFESSIONAL 
80. ADMIN. SUPPORT 
81. SKILLED CRAFT 
82. SERVICE/MAINTENANCE

83. TOTAL NEW HIRES           
(LINES 75 – 82)
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                 Male                             Female

 Male Female White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races

Total Col A-
N

A B C D E F G H I J K L M N O

1. $0.1-15.9
2. 16.0-19.9
3. 20.0-24.9
4. 25.0-32.9

5. 33.0-42.9
6. 43.0-54.9
7. 55.0-69.9
8. 70.0 PLUS
9. $0.1-15.9 
10. 16.0-19.9 
11. 20.0-24.9 

12. 25.0-32.9 

13. 33.0-42.9 
14. 43.0-54.9 

15. 55.0-69.9 

16. 70.0 PLUS

17. $0.1-15.9 
18. 16.0-19.9 
19. 20.0-24.9 
20. 25.0-32.9 

21. 33.0-42.9 
22. 43.0-54.9 
23. 55.0-69.9 
24. 70.0 PLUS

25. $0.1-15.9 
26. 16.0-19.9 
27. 20.0-24.9 
28. 25.0-32.9 
29. 33.0-42.9 
30. 43.0-54.9 
31. 55.0-69.9 
32. 70.0 PLUS
33. $0.1-15.9 
34. 16.0-19.9 
35. 20.0-24.9 
36. 25.0-32.9 
37. 33.0-42.9 
38. 43.0-54.9 
39. 55.0-69.9 
40. 70.0 PLUS
41. $0.1-15.9 
42. 16.0-19.9 
43. 20.0-24.9 
44. 25.0-32.9 
45. 33.0-42.9 
46. 43.0-54.9 
47. 55.0-69.9 
48. 70.0 PLUS

Administr
ative 

Support

D. EMPLOYMENT DATA AS OF JUNE 30 

(Do not include elected/appointed officials. Blanks will be counted as zero)

                                               For each cell provide the TOTAL Number of Hours worked in last year 

Job 
Categories 

Annual Salary 
(in thousands 

000)

    Hispanic or Latino
Race/Ethnicity

              Non/Hispanic or Latino

Officials 
Administr

ators

Profession
als

Technicia
ns

Protective 
Service

Para-
Profession

als
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                 Male                             Female

 Male Female White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races White

Black or 
African 
American As ian

Native 
Hawai ian 
or Other 
Paci fic 
Is lander

American 
Indian or 
Alaska  
Native

Two or 
More 
races

Total Col A-
N

A B C D E F G H I J K L M N O
49. $0.1-15.9 
50. 16.0-19.9 
51. 20.0-24.9 
52. 25.0-32.9 
53. 33.0-42.9 
54. 43.0-54.9 
55. 55.0-69.9 
56. 70.0 PLUS
57. $0.1-15.9 
58. 16.0-19.9 
59. 20.0-24.9 
60. 25.0-32.9 
61. 33.0-42.9 
62. 43.0-54.9 
63. 55.0-69.9 
64. 70.0 PLUS

Skilled 
Craft

Service 
Maintena

nce

65. TOTAL FULL TIME 

D. EMPLOYMENT DATA AS OF JUNE 30 (Cont.)
(Do not include elected/appointed officials. Blanks will be counted as zero)

                                               For each cell provide the TOTAL Number of Hours worked in last year 

Categories 
Annual Salary 
(in thousands 

000)

    Hispanic or Latino
Race/Ethnicity

              Non/Hispanic or Latino

2. OTHER THAN FULLTIME EMPLOYEE Hours (Including temporary employee hours)

66. OFFICIALS/ADMIN 
67. PROFESSIONALS 
68. TECHNICIANS 
69. PROTECTIVE SERVICE
70. PARAPROFESSIONAL 
71. ADMIN. SUPPORT 
72. SKILLED CRAFT 
73. SERVICE/MAINTENANC

74. TOTAL OTHER THAN 
FULL TIME (LINES 66 – 73)

3. NEW HIRES DURING FISCAL YEAR Permanent full time only JULY 1 – JUNE 30 hours

75. OFFICIALS/ADMIN 
76. PROFESSIONALS 
77. TECHNICIANS 
78. PROTECTIVE SERVICE
79. PARAPROFESSIONAL 
80. ADMIN. SUPPORT 
81. SKILLED CRAFT 
82. SERVICE/MAINTENANC

83. TOTAL NEW HIRES           
(LINES 75 – 82)
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YPED NAME/TITLE OF AUTHORIZED OFFICIASIGNATUREDATE 

EMAIL

NAME OF PERSON TO CONTACT REGARDING THIS FO

ADDRESS (Number and Street, City, State, Zip Code)

REMARKS (List National Crime Information Center (NCIC) number                                                                                                          
assigned to any Criminal Justice Agencies whose data                                                                                                                                      
are included in this report)

***LIST AGENCIES INCLUDED ON THIS FORM***

CERTIFICATION.  I certify that the information given in this report is correct and true to the 
best of my knowledge and was reported in accordance with accompanying instructions. 
(Willfully false statements on this report are punishable by law, US Code, Title 18, Section 

TITLE

TELEPHONE NUMBER
extension: 
FAX NUMBER
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EEOC FORM 168A Page 1

C. GENERAL STATISTICS
NUMBER OF SCHOOLS OPERATED NUMBER OF ANNEXES OPERATED OCTOBER 1st ENROLLMENT

D. REMARK

B. SCHOOL SYSTEMS IDENTIFICATION (OMIT IS SAME AS LABEL)
NAME

STREET AND NO. OR POST OFFICE BOX CITY/TOWN COUNTY STATE ZIP

Local  Publ ic School                       Specia l  Regional  Agency                               State Education Agency                                                                                      
Other (Speci fy)

FORM APPROVED BY OMB                                     
NO. 3046-0003                                                   

APPROVAL EXPIRES 7/31/17

EQUAL EMPLOYMENT OPPORTUNITY COMMISSION                             
ELEMENTARY -SECONDARY STAFF INFORMATION (EEO-5)                                                                                                                                                                                                                                      

Public school systems                                                                             

This  a  joint requirement of the EEOC and the 
Office for Civi l  Rights , U.S. Department of 
Education and the U.S. Department of Justice. 

DO NOT ALTER INFORMATION PRINTED IN THIS BOX

NOTE: ALL EMPLOYEES IN YOUR SCHOOL DISTRICT MUST BE INCLUDED ON THIS FORM. Additional  Copies  of this  form 
may be obta ined from the address  below. Send your ful l  report to:

PART I. IDENTIFICATION
A. TYPE OF AGENCY WHICH OPERATES THE REPORTING SCHOOL SYSTEM
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PART II. Staff Statistics of (DATE) _______________                                                                                                                                                                                                                                                               DO NOT INCLUDE ELECTED/APPOINTED OFFICIALS (SEE DEFINITION IN APPENDIX                                                                                                                                                                                               

DISTRICT NAME:_____________________________

                 Male                             Female

 Male Female White

Black or 
African 

American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 

Native

Two or 
More 
races White

Black or 
African 

American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 

Native

Two or 
More 
races

Total Col A-
N

A B C D E F G H I J K L M N O

1. L1-L2
2. L3-L4
3. L5-L6
4. L7-L8
5. L9-L10
6. L11-L12
7. L13-L14
8. L15-L16
9. L1-L2
10. L3-L4
11. L5-L6
12. L7-L8
13. L9-L10
14. L11-L12
15. L13-L14
16. L15-L16
17. L1-L2
18. L3-L4
19. L5-L6
20. L7-L8
21. L9-L10
22. L11-L12
23. L13-L14
24. L15-L16
25. L1-L2
26. L3-L4
27. L5-L6
28. L7-L8
29. L9-L10
30. L11-L12
31. L13-L14
32. L15-L16

2. Principals

3. Assistant 
Principals, Teaching

4. Assistant 
Principals, Non-
teaching

1. Officials, 
Administrators, 
Managers

Race/Ethnicity

Hispanic or Latino

Number of Employees   (Report employees in only one category)

Activity Assignment 
Classification Annual Salary 

(in thousands 
000)

              Non/Hispanic or Latino

A. FULL-TIME STAFF
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33. L1-L2
34. L3-L4
35. L5-L6
36. L7-L8
37. L9-L10
38. L11-L12
39. L13-L14
40. L15-L16
41. L1-L2
42. L3-L4
43. L5-L6
44. L7-L8
45. L9-L10
46. L11-L12
47. L13-L14
48. L15-L16
49. L1-L2
50. L3-L4
51. L5-L6
52. L7-L8
53. L9-L10
54. L11-L12
55. L13-L14
56. L15-L16
57. L1-L2
58. L3-L4
59. L5-L6
60. L7-L8
61. L9-L10
62. L11-L12
63. L13-L14
64. L15-L16
65. L1-L2
66.L3-L4
67. L5-L6
68. L7-L8
69. L9-L10
70. L11-L12
71. L13-L14
72. L15-L16
73. L1-L2
74. L3-L4
75. L5-L6
76. L7-L8
77. L9-L10
78. L11-L12
79. L13-L14
80. L15-L16

5. Elementary 
Classroom Teachers

6. Secondary 
Classroom Teachers

7. Other Classroom 
Teachers

8. Guidance

9. Psychological

10. 
Librarians/Audiovis
ual Staff
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81. L1-L2
82. L3-L4
83. L5-L6
84. L7-L8
85. L9-L10
86. L11-L12
87. L13-L14
88. L15-L16
89. L1-L2
90. L3-L4
91. L5-L6
92. L7-L8
93. L9-L10
94. L11-L12
95. L13-L14
96. L15-L16
97. L1-L2
98. L3-L4
99. L5-L6
100. L7-L8
101. L9-L10
102. L11-L12
103. L13-L14
104. L15-L16
105. L1-L2
106. L3-L4
107. L5-L6
108. L7-L8
109. L9-L10
110. L11-L12
111. L13-L14
112. L15-L16
113. L1-L2
114. L3-L4
115. L5-L6
116. L7-L8
117. L9-L10
118. L11-L12
119. L13-L14
120. L15-L16

11. Consultants & 
Supervisors of 
Instruction

12. Other 
Professional Staff

13.Teacher Aides

14. Technicians

15. Administrative 
Support Workers
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121. L1-L2
122. L3-L4
123. L5-L6
124. L7-L8
125. L9-L10
126. L11-L12
127. L13-L14
128. L15-L16
129. L1-L2
130. L3-L4
131. L5-L6
132. L7-L8
133. L9-L10
134. L11-L12
135. L13-L14
136. L15-L16
137. L1-L2
138. L3-L4
139. L5-L6
140. L7-L8
141. L9-L10
142. L11-L12
143. L13-L14
144. L15-L16
145. L1-L2
146. L3-L4
147. L5-L6
148. L7-L8
149. L9-L10
150. L11-L12
151. L13-L14
152. L15-L16

16. Service Workers

17. Skilled Crafts

18. Laborers and 
Helpers

19. TOTALS (1-18)
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Race/Ethnicity
              Non/Hispanic or Latino

    Hispanic or Latino                  Male                             Female
Annual Salary 
(in thousands 
000)

 Male Female White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races

Total Col A-
N

153. L1-L2
154. L3-L4
155. L5-L6
156. L7-L8
157. L9-L10
158. L11-L12
159. L13-L14
160. L15-L16
161. L1-L2
162. L3-L4
163. L5-L6
164. L7-L8
165. L9-L10
166. L11-L12
167. L13-L14
168. L15-L16
169. L1-L2
170. L3-L4
171. L5-L6
172. L7-L8
173. L9-L10
174. L11-L12
175. L13-L14
176. L15-L16

B. PART-TIME STAFF

20. Professional 
Instructional 

Activity Assignment 
Classification

21. All Other 

22. TOTALS (20-21)
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177. L1-L2
178. L3-L4
179. L5-L6
180. L7-L8
181. L9-L10
182. L11-L12
183. L13-L14
184. L15-L16
185. L1-L2
186. L3-L4
187. L5-L6
188. L7-L8
189. L9-L10
190. L11-L12
191. L13-L14
192. L15-L16
193. L1-L2
194. L3-L4
195. L5-L6
196. L7-L8
197. L9-L10
198. L11-L12
199. L13-L14
200. L15-L16
201. L1-L2
202. L3-L4
203. L5-L6
204. L7-L8
205. L9-L10
206. L11-L12
207. L13-L14
208. L15-L16
209. L1-L2
210. L3-L4
211. L5-L6
212. L7-L8
213. L9-L10
214. L11-L12
215. L13-L14
216. L15-L16
217. L1-L2
218. L3-L4
219. L5-L6
220. L7-L8
221. L9-L10
222. L11-L12
223. L13-L14
224. L15-L16

23. Officials, 
Administrators, 

Managers

C. NEW HIRES FULL-TIME (JULY THRU SEPT. OF THE SURVEY YEAR)

24. Principals/ 
Assistant Principals

25. Classroom 
Teachers

26. Other 
Professional Staff

27. Nonprofessional 
Staff

28. TOTALS (23-27)
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PART III. Staff Statistics of (DATE) _______________                                                                                                                                                                                                                                                            DO NOT INCLUDE ELECTED/APPOINTED OFFICIALS (SEE DEFINITION IN APPENDIX                                                                                                                                                                                               

DISTRICT NAME:_____________________________

                 Male                             Female

 Male Female White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races Total Col A-N

A B C D E F G H I J K L M N O

1. L1-L2
2. L3-L4
3. L5-L6
4. L7-L8
5. L9-L10
6. L11-L12
7. L13-L14
8. L15-L16

9. L1-L2
10. L3-L4
11. L5-L6
12. L7-L8
13. L9-L10
14. L11-L12
15. L13-L14
16. L15-L16
17. L1-L2
18. L3-L4
19. L5-L6
20. L7-L8
21. L9-L10
22. L11-L12
23. L13-L14
24. L15-L16
25. L1-L2
26. L3-L4
27. L5-L6
28. L7-L8
29. L9-L10
30. L11-L12
31. L13-L14
32. L15-L16

For each cell provide the TOTAL Number of Hours worked in last year 
A. FULL-TIME STAFF

4. Assistant 
Principals, Non-
teaching

1. Officials, 
Administrators, 
Managers

2. Principals

3. Assistant 
Principals, Teaching

Hispanic or Latino

Race/Ethnicity
              Non/Hispanic or Latino

Activity Assignment 
Classification

Salary              
(in thousands 

000)
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33. L1-L2
34. L3-L4
35. L5-L6
36. L7-L8
37. L9-L10
38. L11-L12
39. L13-L14
40. L15-L16
41. L1-L2
42. L3-L4
43. L5-L6
44. L7-L8
45. L9-L10
46. L11-L12
47. L13-L14
48. L15-L16
49. L1-L2
50. L3-L4
51. L5-L6
52. L7-L8
53. L9-L10
54. L11-L12
55. L13-L14
56. L15-L16
57. L1-L2
58. L3-L4
59. L5-L6
60. L7-L8
61. L9-L10
62. L11-L12
63. L13-L14
64. L15-L16
65. L1-L2
66.L3-L4
67. L5-L6
68. L7-L8
69. L9-L10
70. L11-L12
71. L13-L14
72. L15-L16
73. L1-L2
74. L3-L4
75. L5-L6
76. L7-L8
77. L9-L10
78. L11-L12
79. L13-L14
80. L15-L16

5. Elementary 
Classroom Teachers

6. Secondary 
Classroom Teachers

7. Other Classroom 
Teachers

8. Guidance

9. Psychological

10. 
Librarians/Audiovis
ual Staff
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81. L1-L2
82. L3-L4
83. L5-L6
84. L7-L8
85. L9-L10
86. L11-L12
87. L13-L14
88. L15-L16
89. L1-L2
90. L3-L4
91. L5-L6
92. L7-L8
93. L9-L10
94. L11-L12
95. L13-L14
96. L15-L16
97. L1-L2
98. L3-L4
99. L5-L6
100. L7-L8
101. L9-L10
102. L11-L12
103. L13-L14
104. L15-L16
105. L1-L2
106. L3-L4
107. L5-L6
108. L7-L8
109. L9-L10
110. L11-L12
111. L13-L14
112. L15-L16
113. L1-L2
114. L3-L4
115. L5-L6
116. L7-L8
117. L9-L10
118. L11-L12
119. L13-L14
120. L15-L16
121. L1-L2
122. L3-L4
123. L5-L6
124. L7-L8
125. L9-L10
126. L11-L12
127. L13-L14
128. L15-L16

16. Service Workers

11. Consultants & 
Supervisors of 
Instruction

12. Other 
Professional Staff

13.Teacher Aides

14. Technicians

15. Administrative 
Support Workers
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129. L1-L2
130. L3-L4
131. L5-L6
132. L7-L8
133. L9-L10
134. L11-L12
135. L13-L14
136. L15-L16
137. L1-L2
138. L3-L4
139. L5-L6
140. L7-L8
141. L9-L10
142. L11-L12
143. L13-L14
144. L15-L16
145. L1-L2
146. L3-L4
147. L5-L6
148. L7-L8
149. L9-L10
150. L11-L12
151. L13-L14
152. L15-L16

17. Skilled Crafts

18. Laborers and 
Helpers

19. TOTALS (1-18)
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Race/Ethnicity
              Non/Hispanic or Latino

    Hispanic or Latino                  Male                             Female
Annual Salary 
(in thousands 
000)

 Male Female White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races White

Black or 
African 
American Asian

Native 
Hawaiian 
or Pacific 
Islander

Native 
American 
or Alaska 
Native

Two or 
More 
races Total Col A-N

153. L1-L2
154. L3-L4
155. L5-L6
156. L7-L8
157. L9-L10
158. L11-L12
159. L13-L14
160. L15-L16
161. L1-L2
162. L3-L4
163. L5-L6
164. L7-L8
165. L9-L10
166. L11-L12
167. L13-L14
168. L15-L16
169. L1-L2
170. L3-L4
171. L5-L6
172. L7-L8
173. L9-L10
174. L11-L12
175. L13-L14
176. L15-L16

B. PART-TIME STAFF

Activity Assignment 
Classification

20. Professional 
Instructional 

21. All Other 

22. TOTALS (20-21)
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177. L1-L2
178. L3-L4
179. L5-L6
180. L7-L8
181. L9-L10
182. L11-L12
183. L13-L14
184. L15-L16
185. L1-L2
186. L3-L4
187. L5-L6
188. L7-L8
189. L9-L10
190. L11-L12
191. L13-L14
192. L15-L16
193. L1-L2
194. L3-L4
195. L5-L6
196. L7-L8
197. L9-L10
198. L11-L12
199. L13-L14
200. L15-L16
201. L1-L2
202. L3-L4
203. L5-L6
204. L7-L8
205. L9-L10
206. L11-L12
207. L13-L14
208. L15-L16

25. Classroom 
Teachers

C. NEW HIRES FULL-TIME (JULY THRU SEPT. OF THE SURVEY YEAR)

23. Officials, 
Administrators, 

Managers

24. Principals/ 
Assistant Principals

26. Other 
Professional Staff
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209. L1-L2
210. L3-L4
211. L5-L6
212. L7-L8
213. L9-L10
214. L11-L12
215. L13-L14
216. L15-L16
217. L1-L2
218. L3-L4
219. L5-L6
220. L7-L8
221. L9-L10
222. L11-L12
223. L13-L14
224. L15-L16

Phone:
Fax: 
Email: 

27. Nonprofessional 
Staff

28. TOTALS (23-27)

CERTIFICATION: I certify that the information given in this report is correct and true to the best of my knowledge and was prepared in accordance with accompanying instructions. Willfully false 
statements on this report are punishable by law, U.S. Code, Title 18, Section 1001.

Date Typed Name/Title of Person Responsible for Report Signature 
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